NFPA® codes, standards, recommended practices, and guides (“NFPA Documents”), of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in NFPA Documents.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on NFPA Documents. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making NFPA Documents available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of NFPA Documents. Nor does the NFPA list, certify, test, or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.
IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA DOCUMENTS

ADDITIONAL NOTICES AND DISCLAIMERS

Updating of NFPA Documents

Users of NFPA codes, standards, recommended practices, and guides (“NFPA Documents”) should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of Tentative Interim Amendments. An official NFPA Document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments and any Errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments or corrected through the issuance of Errata, consult appropriate NFPA publications such as the National Fire Codes® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed below.

Interpretations of NFPA Documents

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Patents

The NFPA does not take any position with respect to the validity of any patent rights referenced in, related to, or asserted in connection with an NFPA Document. The users of NFPA Documents bear the sole responsibility for determining the validity of any such patent rights, as well as the risk of infringement of such rights, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on NFPA Documents.

NFPA adheres to the policy of the American National Standards Institute (ANSI) regarding the inclusion of patents in American National Standards (“the ANSI Patent Policy”), and hereby gives the following notice pursuant to that policy:

NOTICE: The user’s attention is called to the possibility that compliance with an NFPA Document may require use of an invention covered by patent rights. NFPA takes no position as to the validity of any such patent rights or as to whether such patent rights constitute or include essential patent claims under the ANSI Patent Policy. If, in connection with the ANSI Patent Policy, a patent holder has filed a statement of willingness to grant licenses under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, copies of such filed statements can be obtained, on request, from NFPA. For further information, contact the NFPA at the address listed below.

Law and Regulations

Users of NFPA Documents should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of its codes, standards, recommended practices, and guides, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

NFPA Documents are copyrighted by the NFPA. They are made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of safe practices and methods. By making these documents available for use and adoption by public authorities and private users, the NFPA does not waive any rights in copyright to these documents.

Use of NFPA Documents for regulatory purposes should be accomplished through adoption by reference. The term “adoption by reference” means the citing of title, edition, and publishing information only. Any deletions, additions, and changes desired by the adopting authority should be noted separately in the adopting instrument. In order to assist NFPA in following the uses made of its documents, adopting authorities are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. For technical assistance and questions concerning adoption of NFPA Documents, contact NFPA at the address below.

For Further Information

All questions or other communications relating to NFPA Documents and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, NFPA, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02169-7471; email: stds_admin@nfpa.org

For more information about NFPA, visit the NFPA website at www.nfpa.org.
Origin and Development of NFPA 409

The original fire protection recommendations for the construction and protection of airplane hangars were published by the National Board of Fire Underwriters (NBFU), now the American Insurance Association, in 1930. Revisions were issued by the NBFU in 1931, 1943, 1945, and 1950. The 1943, 1945, and 1950 editions were published as NBFU Pamphlet 85. In 1951, the National Fire Protection Association organized a Committee on Aircraft Hangars, to which the NBFU and other interested groups lent their support. The NFPA's first standard on aircraft hangars was adopted in 1954, and the NBFU adopted the same text, rescinding its 1950 standard. Revisions were made in 1957 and 1958 by the NFPA committee. In 1959, a reorganization of the NFPA aviation activities resulted in the assignment of NFPA 409 to the Sectional Committee on Aircraft Hangars and Airport Facilities, which prepared the 1960, 1962, 1965, 1966, 1967, 1969, 1970, 1971, 1972, 1973, and 1975 editions. In 1978, the sectional committee was reorganized as the Technical Committee on Airport Facilities and completed a revision to NFPA 409. The document underwent extensive editorial revision and partial technical revision in 1984 and was again revised in 1990 and 1995.

For the 2001 edition, the fire protection requirements for Group I hangars were extensively revised, and new criteria were added for membrane-covered rigid-steel-frame-structure hangars.

The 2004 edition of this standard was a partial revision.

The 2011 edition of this standard is also a partial revision. Criteria have been added to clarify where sprinklers are required for smaller hangars such as those used by general aviation entities. Unenforceable terms have also been removed to comply with the Manual of Style for NFPA Technical Committee Documents.
Technical Committee on Airport Facilities

James R. Doctorman, Chair
The Boeing Company, KS [U]

Dennis C. Kennedy, Secretary (Alternate)
Tyco/Ansul Incorporated, WI [M]
(Alt. to Christy J. Marsolo)

Michael E. Aaron, The RJA Group, Inc., IL [SE]
Dennis C. Banschbach, XL Global Asset Protection Services, IL [I]
Gene E. Benzenberg, Alison Control Inc., NJ [M]
J. Robert Boyer, GE Security, NJ [M]
Rep. National Electrical Manufacturers Association
Thomas G. Burk, Federal Express Corporation, TN [U]
David J. Burkhart, Code Consultants, Inc., MO [SE]
James Devonshire, Buckeye Fire Equipment Company, TX [M]
Scott Enides, S.R.I. Fire Sprinkler Corporation, NY [M]
Rep. National Fire Sprinkler Association
Elwin G. Joyce, II, Eastern Kentucky University, KY [E]
Rep. International Fire Marshals Association
Michael J. Kemmis, Qantas Airways Limited, Australia [U]
Rep. Fire Protection Association Australia
Kiran C. Kochhar, U.S. Army Corps of Engineers, VA [U]
L. M. Krasner, FM Global, MA [I]

Keith C. Kremkow, Marsh USA Inc., IL [I]
Richard J. Louis, Port Authority of New York & New Jersey, NY [E]
Christy J. Marsolo, Tyco International Ltd., GA [M]
Maurice M. Pilette, Mechanical Designs Ltd., MA [SE]
Jack Poole, Poole Fire Protection, Inc., KS [SE]
Randy D. Pope, Burns & McDonnell Engineering Company, MO [SE]
Rep. American Fire Sprinkler Association
Robert Saunders, Wasatch Design Consultants, UT [SE]
(Voting limited to Document 415)
Joseph A. Simone, U.S. Department of the Navy, DC [E]
Fred K. Walker, U.S. Department of the Air Force, FL [U]
Martin H. Workman, The Viking Corporation, MI [M]
Kevin M. Wypychoski, Precision Mechanical Services, Inc., CT [IM]

Alternates

Nathaniel J. Addleman, The RJA Group, Inc., TX [SE]
(Alt. to M. E. Aaron)
Delbert R. Chase, Jr., Federal Express Corporation, TN [U]
(Alt. to T. G. Burk)
Ronald B. Coker, Coker Engineering, TX [IM]
(Alt. to R. W. Rees)
Robert Kasiski, FM Global, MA [I]
(Alt. to L. M. Krasner)

John E. Loehle, U.S. Air National Guard, MD [U]
(Alt. to F. K. Walker)
Terry Schultz, Code Consultants, Inc., MO [SE]
(Alt. to D. J. Burkhart)
Robert J. Tabet, U.S. Department of the Navy, VA [E]
(Alt. to J. A. Simone)
Robert Vincent, Shambaugh & Son, L.P., IN [M]
(Alt. to S. Enides)
Alison J. Wakelin, Hughes Associates, Inc., MD [SE]
(Alt. to J. L. Scheffey)

Nonvoting

(Member Emeritus)

Timothy A. Hawthorne, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on fire safety for the construction and protection at airport facilities involving construction engineering but excluding airport fixed fueling systems.
Chapter 1 Administration ... 409–5
 1.1 Scope .. 409–5
 1.2 Purpose ... 409–5
 1.3 Equivalency .. 409–5
 1.4 New Technology 409–5
 1.5 Units .. 409–5

Chapter 2 Referenced Publications 409–5
 2.1 General ... 409–5
 2.2 NFPA Publications 409–5
 2.3 Other Publications 409–6
 2.4 References for Extracts in Mandatory Sections 409–6

Chapter 3 Definitions .. 409–6
 3.1 General ... 409–6
 3.2 NFPA Official Definitions 409–6
 3.3 General Definitions 409–6

Chapter 4 Aircraft Hangar Groups 409–7
 4.1 Aircraft Hangar Classification 409–7

Chapter 5 Construction of Group I and Group II Aircraft Hangars 409–7
 5.1 Types of Construction 409–7
 5.2 Internal Separations 409–7
 5.3 Clear Space Distance Requirements Around Hangars 409–8
 5.4 Floors .. 409–8
 5.5 Roofs .. 409–8
 5.6 Primary Structural Steel Columns Supporting the Roof 409–8
 5.7 Doors ... 409–9
 5.8 Curtains ... 409–9
 5.9 Landing Gear Pits, Ducts, and Tunnels 409–9
 5.10 Exposed Interior Insulation 409–9
 5.11 Drainage of Aprons and Hangar Floors 409–9
 5.12 Heating and Ventilating 409–10
 5.13 Lighting and Electrical Systems 409–10
 5.14 Lightning Protection 409–10
 5.15 Grounding Facilities for Static Electricity 409–10
 5.16 Exit and Access Requirements 409–11
 5.17 Draft Curtains 409–11

Chapter 6 Protection of Group I Aircraft Hangars 409–11
 6.1 General ... 409–11
 6.2 Fire Protection Systems 409–11
 6.3 Wheeled and Portable Extinguishers 409–16
 6.4 Protection System Alarms 409–16

Chapter 7 Protection of Group II Aircraft Hangars 409–16
 7.1 General ... 409–16
 7.2 Closed-Head Water Sprinkler System for Aircraft Storage and Servicing Areas 409–16
 7.3 Foam Concentrate — General 409–17
 7.4 Low-Expansion Foam System 409–17
 7.5 High-Expansion Foam System 409–18
 7.6 Closed-Head Foam-Water Sprinkler System 409–18
 7.7 Detection and Actuation Systems 409–18
 7.8 Water Supply ... 409–18

Chapter 8 Group III Aircraft Hangars 409–19
 8.1 Construction .. 409–19
 8.2 Separation and Internal Subdivisions 409–19
 8.3 Hangar Building Clusters 409–19
 8.4 Heating and Ventilating 409–20
 8.5 Lighting and Electrical Systems 409–20
 8.6 Lightning Protection 409–20
 8.7 Grounding Facilities for Static Electricity 409–20
 8.8 Exit and Access Requirements 409–20
 8.9 Fire Protection for Group III Hangars 409–20

Chapter 9 Group IV Aircraft Hangars 409–21
 9.1 Construction .. 409–21
 9.2 Internal Separations 409–21
 9.3 Clear Space Distance Around Hangars 409–21
 9.4 Aprons and Floors 409–21
 9.5 Doors .. 409–21
 9.6 Curtains ... 409–21
 9.7 Landing Gear Pits, Ducts, and Tunnels 409–21
 9.8 Exposed Interior Insulation 409–22
 9.9 Drainage of Aprons and Hangar Floors 409–22
 9.10 Heating and Ventilating 409–22
 9.11 Lighting and Electrical Systems 409–22
 9.12 Grounding Facilities for Static Electricity 409–22
 9.13 Exit and Access Requirements 409–22

Chapter 10 Paint Hangars ... 409–25
 10.1 Construction .. 409–25
 10.2 Fire Protection .. 409–26
 10.3 Ventilation ... 409–26
 10.4 Electrical Equipment 409–26
 10.5 Operations .. 409–26
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11.1</td>
<td>Fire Protection Systems</td>
</tr>
<tr>
<td>12</td>
<td>12.1</td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>Lighting and Electrical Systems</td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td>Grounding Facilities for Static Electricity</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>Protection of Unfueled Aircraft Hangars</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>Spray Application of Flammable and Combustible Liquids</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>Portable Extinguishers</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>Protection System Alarms</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Explanatory Material</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Building Construction Types</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Informational References</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>409–38</td>
</tr>
</tbody>
</table>
Chapter 1 Administration

1.1 Scope.

1.1.1 This standard contains the minimum requirements for the proper construction of aircraft hangars and protection of aircraft hangars from fire.

1.1.2 This standard applies only to buildings or structures used for aircraft storage, maintenance, or related activities. Other uses within an aircraft hangar shall be protected in accordance with other applicable NFPA Standards.

1.2 Purpose. The purpose of this standard is to provide a reasonable degree of protection from fire for life and property in aircraft hangars, based on sound engineering principles, test data, and field experience.

1.3 Equivalency. Nothing in this standard is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those prescribed by this standard.

1.3.1 Technical documentation shall be submitted to the authority having jurisdiction to demonstrate equivalency.

1.3.2 The system, method, or device shall be approved for the intended purpose by the authority having jurisdiction.

1.4 New Technology.

1.4.1 Nothing in this standard shall be intended to restrict new technologies or alternate arrangements, provided the level of safety prescribed by this standard is not lowered.

1.4.2 Materials or devices not specifically designated by this standard shall be utilized in complete accord with all conditions, requirements, and limitations of their listings.

1.5 Units.

1.5.1 Metric units of measurement in this standard are in accordance with the modernized metric system known as the International System of Units (SI).

1.5.1.1 The units are listed in Table 1.5.1.1 with conversion factors.

<table>
<thead>
<tr>
<th>Name of Unit</th>
<th>Unit Symbol</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liter</td>
<td>L</td>
<td>1 gal = 3.785 L</td>
</tr>
<tr>
<td>Millimeter</td>
<td>mm</td>
<td>1 in. = 25.4 mm</td>
</tr>
<tr>
<td>Meter</td>
<td>m</td>
<td>1 ft = 0.305 m</td>
</tr>
<tr>
<td>Kilogram</td>
<td>kg</td>
<td>1 lb (mass) = 0.454 kg</td>
</tr>
<tr>
<td>Degree Celsius</td>
<td>°C</td>
<td>(5/9)(°F – 32) = °C</td>
</tr>
<tr>
<td>Bar</td>
<td>bar</td>
<td>1 psi = 0.0689 bar</td>
</tr>
</tbody>
</table>

1.5.1.2 If a value for measurement as given in this standard is followed by an equivalent value in other units, the first stated is to be regarded as the requirement.

1.5.1.3 A given equivalent value can be considered approximate.

1.5.2 The conversion procedure for the SI units is to multiply the quantity by the conversion factor and then round the result to the appropriate number of significant digits.

Chapter 2 Referenced Publications

2.1 General. The documents or portions thereof listed in this chapter are referenced within this standard and shall be considered part of the requirements of this document.

2.2 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

2.3 Other Publications.
2.3.1 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

2.4 References for Extracts in Mandatory Sections.

Chapter 3 Definitions

3.1 General. The definitions contained in this chapter shall apply to the terms used in this standard. Where terms are not defined in this chapter or within another chapter, they shall be defined using their ordinarily accepted meanings within the context in which they are used. Merriam-Webster’s Collegiate Dictionary, 11th edition, shall be the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.
3.2.1* Approved. Acceptable to the authority having jurisdiction.
3.2.2* Authority Having Jurisdiction (AHJ). An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.
3.2.3* Listed. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.
3.2.4 Shall. Indicates a mandatory requirement.
3.2.5 Should. Indicates a recommendation or that which is advised but not required.
3.2.6 Standard. A document, the main text of which contains only mandatory provisions using the word “shall” to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions shall be located in an appendix or annex, footnote, or fine-print note and are not to be considered a part of the requirements of a standard.

3.3 General Definitions.
3.3.1 Aircraft Access Door. Any opening through which any portion of the aircraft is passed to gain entry to the hangar.
3.3.2* Aircraft Hangar. A building or other structure inside any part of which aircraft are housed.
3.3.3* Aircraft Storage and Servicing Area. That part of a hangar normally used for the storage and servicing of one or more aircraft, not including any adjacent or contiguous areas or structures, such as shops, storage areas, and offices.
3.3.4 Calculation Method.
3.3.4.1 Demand Calculation Method. Hydraulic calculation procedure for determining the minimum theoretical flow and pressure required to produce a minimum specified total discharge from a specific configuration of piping and discharge devices.
3.3.4.2 Supply Calculation Method. Hydraulic calculation procedure for determining the maximum theoretical flows and pressures in a system with a specific configuration of piping and discharge devices supplied by a water distribution system.
3.3.5 Detection System. A system consisting of detectors; controls; control panels; automatic and manual actuating mechanisms; all wiring, piping, and tubing; and all associated equipment that is used to actuate an extinguishing system.
3.3.6 Fire Wall. A wall separating buildings or subdividing a building to prevent the spread of fire and having a fire resistance rating and structural stability. [221, 2009]
3.3.7 Foam-Water Deluge System. A foam-water sprinkler system employing open discharge devices, which are attached to a piping system that is connected to a water supply through a valve that is opened by the operation of a detection system, which is installed in the same areas as the discharge devices. When this valve opens, water flows into the piping system and discharges from all discharge devices attached thereto. [16, 2007]
3.3.8 Gross Wing Area. See 3.3.17, Wing Area.

3.3.9 Hangar Building Cluster. A group of buildings with more than one area for the storage and servicing of aircraft and all attached or contiguous structures, or structures not separated as specified in 8.3.1 of this standard, as appropriate.

3.3.10 Hangar Fire Area. An area within an aircraft hangar subject to loss by a single fire because of lack of internal subdivisions as specified in Section 5.2 or 8.2 of this standard, as appropriate.

3.3.11 Membrane Hangar. The flexible structural fabric or film that supports the imposed loads and transmits them to the supporting structure. The membrane carries only tension or shear in the plane of the membrane.

3.3.12* Paint Hangar. An aircraft hangar that is occupied primarily for the application of paint or other flammable or combustible liquids involving an entire aircraft or major portions of an aircraft.

3.3.13 Single Hangar Building. A building with one area for the storage and servicing of aircraft and any attached, adjoining, or contiguous structure, such as a lean-to, shop area, or parts storage area not separated as specified in Section 5.2 or 8.2 of this standard, as appropriate.

3.3.14 Tail Height. The maximum tail height as stated in aircraft manufacturers’ specifications.

3.3.15 Unfueled Aircraft. An aircraft whose fuel system has had flammable or combustible liquid removed such that no tank, cell, or piping contains more than one-half of 1 percent of its volumetric capacity.

3.3.16 Weathered-Membrane Material. Membrane material that has been subjected to a minimum of 3000 hours in a weatherometer in accordance with ASTM G 155, Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials, or approved equivalent.

3.3.17 Wing Area. Total projected area of clean wing (no projecting flaps, slats, and other items), including all control surfaces and the area of the fuselage bounded by the leading and trailing edges projected to the centerline (inapplicable to slender-delta aircraft with extremely large leading-edge sweep-angle). Net area excludes projected areas of fuselage, nacelles, and other items.

Chapter 4 Aircraft Hangar Groups

4.1 Aircraft Hangar Classification. For the purposes of this standard, aircraft hangars shall be classified as specified in 4.1.1 through 4.1.4.

4.1.1 Group I Aircraft Hangar. A Group I aircraft hangar shall have at least one of the following features and operating conditions:

(1) An aircraft access door height over 8.5 m (28 ft)
(2) A single fire area in excess of 3716 m² (40,000 ft²)
(3) Provision for housing an aircraft with a tail height over 8.5 m (28 ft)

4.1.2 Group II Aircraft Hangar. A Group II aircraft hangar shall have both of the following features:

(1) An aircraft access door height of 8.5 m (28 ft) or less
(2) A single fire area for specific types of construction in accordance with Table 4.1.2

<table>
<thead>
<tr>
<th>Type of Construction</th>
<th>Single Fire Area (Inclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (443) and (332)</td>
<td>2,787–3,716</td>
</tr>
<tr>
<td>Type II (222)</td>
<td>1,858–3,716</td>
</tr>
<tr>
<td>Type II (111), Type III (211), and Type IV (2HH)</td>
<td>1,394–3,716</td>
</tr>
<tr>
<td>Type II (000)</td>
<td>1,115–3,716</td>
</tr>
<tr>
<td>Type III (200)</td>
<td>1,115–3,716</td>
</tr>
<tr>
<td>Type V (111)</td>
<td>743–3,716</td>
</tr>
<tr>
<td>Type V (000)</td>
<td>465–3,716</td>
</tr>
</tbody>
</table>

4.1.3* Group III Aircraft Hangar. A Group III hangar shall have both of the following features:

(1) An aircraft access door height of 8.5 m (28 ft) or less
(2) A single fire area that measures up to the maximum square footage permitted for specific types of construction in accordance with Table 4.1.3

<table>
<thead>
<tr>
<th>Type of Construction</th>
<th>Maximum Single Fire Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (443) and (332)</td>
<td>2,787</td>
</tr>
<tr>
<td>Type II (222)</td>
<td>1,858</td>
</tr>
<tr>
<td>Type II (111), Type III (211), and Type IV (2HH)</td>
<td>1,394</td>
</tr>
<tr>
<td>Type II (000)</td>
<td>1,115</td>
</tr>
<tr>
<td>Type III (200)</td>
<td>1,115</td>
</tr>
<tr>
<td>Type V (111)</td>
<td>743</td>
</tr>
<tr>
<td>Type V (000)</td>
<td>465</td>
</tr>
</tbody>
</table>

4.1.4 Group IV Aircraft Hangar. A Group IV aircraft hangar shall be a structure constructed of a membrane-covered rigid steel frame.

Chapter 5 Construction of Group I and Group II Aircraft Hangars

5.1 Types of Construction.

5.1.1* Group I hangars shall be either Type I or Type II construction in accordance with NFPA 220. Group II hangars shall be constructed of any of the types of construction specified in NFPA 220 or any combination thereof.

5.1.2* Mezzanines, tool rooms, and other enclosures within aircraft storage and servicing areas shall be constructed of noncombustible material or limited-combustible material as defined in NFPA 220 in all hangars except those of Type V (111) and (000) construction.

5.2 Internal Separations.

5.2.1* Where aircraft storage and servicing areas are subdivided into separate fire areas, the separation shall be by a fire
5.2.2 Where two or more aircraft storage and servicing areas constituting separate fire areas are separated by continuous offices, shops, and parts storage areas, one of the two walls between the aircraft storage and servicing areas and the offices, shops, and parts storage areas shall comply with 5.2.1. The other wall shall comply with 5.2.3.

5.2.3* Partitions and ceilings separating aircraft storage and servicing areas from all other areas, shops, offices, and parts storage areas shall have at least a 1-hour fire resistance rating with openings protected by listed fire doors or shutters having a minimum fire resistance rating of 45 minutes.

5.2.4 Where a storage and servicing area has an attached, adjoining, or contiguous structure, such as a lean-to, shop, office, or parts storage area, the wall common to both areas shall have at least a 1-hour fire resistance rating, with openings protected by listed fire doors having a minimum fire resistance rating of 45 minutes and actuated from both sides of the wall.

5.3 Clear Space Distance Requirements Around Hangars.

5.3.1 Precautions shall be taken to ensure ready access to hangars from all sides. Separation shall be provided to reduce fire exposure between buildings. The clear spaces specified in Table 5.3.1 shall not be used for the storage or parking of aircraft or concentrations of combustible materials, nor shall buildings of any type be erected therein.

Table 5.3.1 Clear Space Distances for Single Hangar Buildings

<table>
<thead>
<tr>
<th>Type of Construction</th>
<th>Minimum Separation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Type I (443) and (332)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (222)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (111), Type III (211), and Type IV (2HH)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (000)</td>
<td>15</td>
</tr>
<tr>
<td>Type III (200)</td>
<td>15</td>
</tr>
<tr>
<td>Type V (111) and (000)</td>
<td>23</td>
</tr>
</tbody>
</table>

5.3.2 For single hangar buildings, the clear space distances specified in Table 5.3.1 shall be maintained on all sides of the single hangar. Where mixed types of construction are involved, the less fire-resistant type of construction shall be used to determine the clear space required.

5.3.2.1 Where both exposing walls and openings therein of adjacent single hangar buildings have a minimum fire resistance rating of at least 3 hours, no minimum separation distance shall be required.

5.3.2.2 Where the exposing wall and any openings therein of one hangar have a minimum fire resistance rating of at least 2 hours, the minimum separation distance shall be permitted to be reduced to not less than 7.5 m (25 ft) for single hangar buildings.

5.3.2.3* Where the exposing walls of both buildings have a minimum fire resistance rating of at least 2 hours, with all windows protected by listed glass in fixed steel sash having a minimum fire resistance rating of 45 minutes, with outside sprinkler protection and each doorway protected with one automatically operated listed fire door having a minimum fire resistance rating of 1½ hours, the clear space distance shall be permitted to be reduced to not less than 7.5 m (25 ft) between single hangar buildings. Under such conditions, the glass area in the exposing walls shall not be more than 25 percent of the wall area.

5.4 Floors.

5.4.1 The surface of the grade floor of aircraft storage and servicing areas, regardless of type of hangar construction, shall be noncombustible and above the grade of the approach or apron at the entrance to the hangar.

5.4.2* The floors of adjoining areas that pose flammable or combustible liquid spill hazards and that connect with aircraft storage and servicing areas shall be noncombustible and shall be designed to prevent a spill from entering the aircraft storage and servicing area.

5.4.3 Floor openings in multistoried sections of hangars shall be enclosed with partitions or protected with construction having a fire resistance rating not less than that required for the floor construction where the opening is made.

5.5 Roofs.

5.5.1* Roof coverings shall be of an approved type of tile, slate, metal, or asphalt shingle or of built-up roofing finished with asphalt, slate, gravel, or other approved material. Roof coverings shall be listed as Class A or Class B.

5.5.2 Where insulated metal deck assemblies are used, they shall meet or exceed FM Class 1 or UL Fire Classified ratings.

5.5.3* Spaces under roofs, created where suspended ceilings are provided in aircraft storage and servicing areas, shall be cut off from the area below so that the space cannot be used for storage or other occupancy. The space shall be provided with ventilation louvers to ensure air circulation therein.

5.6 Primary Structural Steel Columns Supporting the Roof.

5.6.1 In aircraft storage and servicing areas, protection of columns shall be required in accordance with Section 5.6.

5.6.2 All columns of the aircraft storage and servicing areas shall be made fire resistant using listed materials and methods to provide a fire-resistive rating of not less than 2 hours.

5.6.2.1 All fire-resistant materials used to protect columns shall be of the type that resists damage from discharge of the fixed fire protection system.

5.6.3* Fixed water or foam-water systems or additional discharge devices as an extension of the overhead system shall be permitted to be used in lieu of a 2-hour fire resistance rating, if such systems are designed specifically to protect the columns. Overspray from overhead sprinklers to protect columns shall not be permitted.

5.6.3.1 Distances between discharge devices vertically shall not exceed 5 m (10 ft).

5.6.3.2 The use of discharge devices with any nominal K-factor for column protection shall be permitted.
5.6.3.3 A listed strainer shall be provided on the supply side of discharge devices with nominal K-factors of less than K-40 (K-2.8). [13:8.3.4.1(3)]

5.6.3.4* Vertical structural steel members shall be protected by discharge devices and piping of such size and arrangement as to discharge a net rate of not less than 10.2 (L/min)/m² (0.25 gpm/ft²) over the wetted area. [15:7.4.3.4]

5.6.3.5 Discharge devices for the protection of columns within the remote area of the overhead sprinkler systems shall be included in the calculations for the overhead system.

5.6.4 All fire-resistant materials used to protect structural steel columns shall be of a type that resists damage from discharge of the fixed fire protection system.

5.7 Doors.

5.7.1 Hangar doors that accommodate aircraft shall be constructed of noncombustible or limited-combustible materials where hangars are of any Type I or Type II construction as specified in 5.1.1.

5.7.2 The power source for hangar doors shall operate on independent circuits and shall not be de-energized when the main disconnect switches for general hangar power are shut off.

5.7.3* Vertical traveling doors shall be counterbalanced, and horizontal slide or accordion-type doors shall be arranged so that the doors can be opened through manual or auxiliary operation.

5.7.4* In areas where freezing temperatures occur, door tracks or the bottom edges of doors shall be protected by heating coils or equivalent means to prevent ice formation that has the potential to prevent or delay operation.

5.8 Curtains. Where curtains are used to enclose a work area, they shall be of a listed flame-retardant type.

5.9 Landing Gear Pits, Ducts, and Tunnels.

5.9.1* Landing gear pits, ducts, and tunnels located below floor level shall be designed on the premise that flammable liquids and vapor will be present at all times. Materials and equipment shall be impervious to liquids and shall be fire resistant or noncombustible.

5.9.2 Electrical equipment for all landing gear pits, ducts, and tunnels located below hangar floor level shall be approved for use in Class I, Division 1, Group D hazardous locations in compliance with Article 501 of NFPA 70.

5.9.3 All landing gear pits, ducts, and tunnels shall be provided with a positive mechanical exhaust ventilation system capable of providing a minimum rate of five air changes per hour during daily operations and be designed to discharge externally to the hangar.

5.9.4 Upon the detection of flammable vapors, the ventilation system shall be capable of providing a minimum ventilation rate of 30 air changes per hour for the landing gear pit and all associated ducts or tunnels.

5.9.5* The ventilation system shall be controlled by an approved continuous-reading combustible gas-analyzing system that is arranged to operate the ventilation system at the rate specified in 5.9.4 automatically upon detection of a specified flammable vapor concentration that is below the lower flammable limit (LFL). The detection system shall have sensors located throughout all ducts and tunnels.

5.9.6 Because entry of fuel, oil, and water into landing gear pits is inevitable, drainage or pumping facilities shall be provided.

5.9.6.1 Water-trapped vapor seals and separator fuel traps shall be provided.

5.9.6.2 Where automatic pumping facilities are necessary, they shall be listed for use with aviation fuel and water.

5.9.6.3 The drainage shall be fully enclosed pipe runs if drainage is routed through ventilation or access tunnels to external discharge points.

5.9.7* Explosion protection shall be provided in landing gear pits, communicating ducts, and tunnel areas in the form of pressure-relief venting or by a listed explosion prevention system installed in accordance with NFPA 69.

5.9.8* An approved fire protection system shall be installed to protect each pit unless the hangar fire protection required by either Chapter 6 or Chapter 7 is designed to protect each pit.

5.10 Exposed Interior Insulation. Exposed interior insulation attached to walls and roofs in an aircraft storage or servicing area shall comply with the requirements of NFPA 101 special provisions for aircraft storage hangars and interior wall and ceiling finish criteria.

5.11 Drainage of Aprons and Hangar Floors.

5.11.1 Apron Drainage.

5.11.1.1 The apron or approach to the hangar shall slope away from the hangar with a minimum grade of 0.5 percent (1:200) for the first 15 m (50 ft).

5.11.1.2 Ramps used for aircraft fueling adjacent to hangar structures shall comply with NFPA 415.

5.11.1.3 In establishing locations for nearby aircraft parking, consideration shall be given to the drainage pattern of the apron.

5.11.2 Hangar Floor Trench Drainage.

5.11.2.1* In aircraft storage and servicing areas of hangars, floor trench drainage in accordance with 5.11.2.2 through 5.11.2.12 shall be provided.

5.11.2.2* Floor trench drainage systems shall be provided to restrict the spread of fuel in order to reduce the fire and explosion hazards from fuel spillage.

5.11.2.3 Trench drainage systems shall be designed to reduce fire and explosion hazards within the systems to the maximum extent by the use of noncombustible underground piping and by routing trench drainage as directly as possible to a safe outside location. Such systems shall be designed with traps or be provided with ventilation to prevent vapor mixtures from forming within the underground trench drainage system.

5.11.2.4* Trench drainage systems in aircraft storage or servicing areas shall be designed and constructed so that they have a capacity large enough to prevent buildup of flammable liquids and water over the drain inlet when all fire protection systems and hose streams are discharging at the design rate.

5.11.2.5 The pitch of the floor shall be a minimum of 0.5 percent. The floor pitch provided shall be calculated, taking into consideration the towing requirements of the aircraft and the factors of aircraft weight, balance checking, and maintenance.

5.11.2.6 Each trench drainage system shall be calculated separately, taking into consideration the maximum rated discharge.
based on the supply calculation method for the fire protection systems and hose lines.

5.11.2.7 The size of trench drainage piping shall be determined by the hydraulic demands placed on the system throughout its length.

5.11.2.8 Curbs, ramps, or drains shall be provided at all openings from aircraft storage and servicing areas, or the slope of the floor shall be such as to prevent the flow of liquids through openings.

5.11.2.9 Pits for service facilities, such as for compressed air, electrical outlets, and so forth, shall drain into the floor trench drainage system.

5.11.2.10 Oil separators shall be provided for the trench drainage systems serving all aircraft storage and servicing areas. These separators shall be permitted to serve each hangar trench drainage system or a group of hangar trench drainage systems or be installed as part of a general airport trench drainage system.

5.11.2.11 In aircraft storage and servicing areas protected by water sprinkler systems or foam-water systems, a bypass shall be provided around the separator to allow for emergency direct disposal of water and flammable liquids. Separator systems shall discharge flammable liquid products to a tank, cistern, or sump located away from any exposures.

5.11.2.12 Grates and drain covers shall support the point loading of the heaviest type aircraft or equipment to be housed in the hangar. Grates and covers shall be removable to facilitate cleaning and flushing.

5.12 Heating and Ventilating.

5.12.1* Heating, ventilating, and air-conditioning equipment shall be installed, as applicable, in accordance with NFPA 90A, NFPA 31, NFPA 54, NFPA 90B, and NFPA 58.

5.12.2 In aircraft storage and servicing areas, no heating, ventilating, and air-conditioning equipment employing an open flame or glowing element shall be installed, other than as provided for in 5.12.5.

5.12.3 In aircraft storage and servicing areas, hangar heating plants that are fired with gas, liquid, or solid fuels not covered under 5.12.5 and that are not located in a detached building shall be located in a room separated from other parts of the hangar by construction having at least a 1-hour fire resistance rating.

5.12.3.1 This separated room shall not be used for any other hazardous purpose or combustible storage and shall have no direct access from the aircraft storage or servicing area.

5.12.3.2 Openings in the walls of such rooms communicating with other portions of the hangar shall be restricted to those necessary for ducts or pipes.

5.12.3.3 Penetrations of the 1-hour fire resistance–rated enclosure shall be firestopped with an approved material installed and capable of maintaining the required fire resistance rating for the enclosure.

5.12.3.4 Each such duct shall be protected with a listed automatic fire damper or door.

5.12.3.5 All air for combustion purposes entering such separated rooms shall be drawn from outside the building.

5.12.4* In aircraft storage and servicing areas, heating, ventilating, and air-conditioning systems employing recirculation of air within aircraft storage and servicing areas shall have return air openings not less than 3 m (10 ft) above the floor. Supply air openings shall not be installed in the floor and shall be at least 152 mm (6 in.) from the floor measured to the bottom of the opening.

5.12.4.1 Where automatic fire protection systems are installed in aircraft storage and servicing areas, fans for furnace heating systems shall be arranged to shut down automatically by means of the operation of the interior automatic fire protection system.

5.12.4.1.1 One or more manual fan shutoff switches shall be provided.

5.12.4.1.2 Shutoff switches shall be accessible and clearly placarded.

5.12.5 Suspended or Elevated Heaters.

5.12.5.1 In aircraft storage and servicing areas, listed electric, gas, or oil heaters shall be permitted to be used if installed as specified in 5.12.5.2 through 5.12.5.4.

5.12.5.2 In aircraft storage and servicing areas, heaters shall be installed at least 3 m (10 ft) above the upper surface of wings or of the engine enclosures of the highest aircraft that are capable of being housed in the hangar. The measurement shall be made from the wing or engine enclosure, whichever is higher from the floor, to the bottom of the heater.

5.12.5.3 In shops, offices, and other sections of aircraft hangars communicating with aircraft storage or servicing areas, the bottom of the heaters shall be installed not less than 2.4 m (8 ft) above the floor.

5.12.5.4 In all hangars, suspended or elevated heaters shall be located in spaces where they shall not be subject to injury by aircraft, cranes, movable scaffolding, or other objects. Provisions shall be made to ensure accessibility to suspended heaters for recurrent maintenance purposes.

5.12.6 Where a mechanical ventilating system is employed in hangars or shops, the ventilating system shall be installed in accordance with NFPA 90A.

5.12.7 Where blower and exhaust systems are installed for vapor removal, the systems shall be installed in accordance with NFPA 91.

5.13 Lighting and Electrical Systems.

5.13.1 Artificial lighting shall be restricted to electric lighting.

5.13.2* Electrical services shall be installed in compliance with the provisions for aircraft hangars contained in Article 513 of NFPA 70.

5.13.3 In aircraft storage and servicing areas, main distribution panels, metering equipment, and other electrical equipment shall be located in a room separated from the aircraft storage and servicing areas by a partition having at least a 1-hour fire resistance rating. The partition shall not be penetrated except by electrical raceways, which shall be protected by approved sealing methods maintaining the same fire resistance rating as the partition.

5.14* Lightning Protection. Where provided, lightning protection shall be installed in accordance with NFPA 780.

5.15 Grounding Facilities for Static Electricity.

5.15.1* Aircraft storage and servicing areas shall be provided with grounding facilities for removal and control of static electrical accumulations on aircraft while aircraft are stored or undergoing servicing in a hangar in accordance with 5.15.2 and 5.15.3.
PROTECTION OF GROUP I AIRCRAFT HANGARS

5.15.2 Floor-grounding receptacles shall be provided and shall be either grounded through individual driven electrodes or electrically bonded together in a grid system and the entire system grounded to underground metal piping, such as cold water piping, or driven electrodes. Where driven electrodes are used, they shall consist of 15.9 mm (% in.) diameter or larger metal rods driven at least 1.5 m (5 ft) into the ground. Floor-grounding receptacles shall be designed to minimize the tripping hazard.

5.15.3 Grounding wires shall be bare or insulated and of a gauge that is satisfactorily durable to withstand mechanical strains and usage.

5.16 Exit and Access Requirements.

5.16.1 Means of egress from the aircraft hangar shall comply with NFPA 101.

5.16.2 Aisles and clear space shall be maintained to ensure access to sprinkler control valves, standpipe hose, fire extinguishers, and other fire protection equipment.

5.17* Draft Curtains.

5.17.1 Draft curtains shall be required in Group I hangars.

5.17.2 Draft curtains shall be required in Group II hangars only where foam-water deluge sprinkler systems are provided per the requirements of 6.1.1(1).

5.17.3* Draft curtain areas shall be around each roof/ceiling fire suppression system and subdivided such that a single draft curtain area shall not exceed 697 m² (7500 ft²). The maximum projected floor area under an individual sprinkler system shall be in accordance with Chapters 6 and 7.

5.17.4 Where provided, draft curtains shall be constructed of noncombustible materials not subject to disintegration or fusion during the early stages of a fire and shall be tightly fitted to the underside of the roof or ceiling. Any opening in draft curtains shall be provided with self-closing doors constructed of materials equivalent in fire resistance to the draft curtain itself.

5.17.5 Where provided, draft curtains shall extend down from the roof or ceiling of aircraft storage and servicing areas not less than one-eighth of the height from the floor to the roof or ceiling. Under curved or sloping roofs extending to grade level or close to grade level, draft curtains need not be continued below 4.8 m (16 ft) from the floor.

5.17.6 Where provided, structural features of a building that serve the purpose of draft curtains shall be permitted in lieu of specially constructed draft curtains provided they meet the dimensional requirements of 5.17.5.

Chapter 6 Protection of Group I Aircraft Hangars

6.1 General.

6.1.1 The protection of aircraft storage and servicing areas for Group I aircraft hangars shall be in accordance with any one of the following:

(1) A foam-water deluge system, as specified in 6.2.2. In addition, supplementary protection systems as specified in 6.2.3 shall be provided in hangars housing single aircraft having wing areas greater than 279 m² (3000 ft²).

(2) A combination of automatic sprinkler protection in accordance with 6.2.4 and an automatic low-level low-expansion foam system in accordance with 6.2.5.

(3) A combination of automatic sprinkler protection in accordance with 6.2.4 and an automatic low-level high-expansion foam system in accordance with 6.2.5.

6.1.2 Group I aircraft hangar storage and service areas housing unfueled aircraft shall be provided with protection in accordance with 6.1.1 or with automatic sprinkler protection as specified in Chapter 12.

6.1.3 Automatic sprinkler protection shall be provided inside separate shop, office, and storage areas located inside aircraft maintenance and servicing areas, unless they are otherwise provided with protection in accordance with 6.1.1 or with automatic fire protection systems.

6.1.4 Each sprinkler system shall be designed and installed in accordance with NFPA 13 and NFPA 16, as applicable, and in accordance with the requirements of this chapter.

6.1.5 Additional protection, as specified in 6.2.9 and Sections 6.3 and 6.4, shall be provided in all Group I aircraft hangars in addition to other protection systems required by this chapter.

6.2 Fire Protection Systems.

6.2.1 Plans and Specifications.

6.2.1.1* Before systems are installed, complete specifications and working plans shall be drawn to scale showing all essential details, and plans shall be easily reproducible to provide necessary copies.

6.2.1.2 Information supplied in these plans and specifications shall be in accordance with NFPA 13 and shall include the following:

(1) Design purpose of the systems
(2) Discharge densities and the period of discharge
(3) Hydraulic calculations
(4) Details of tests of the available water supply
(5) Details of proposed water supplies
(6) Detailed layout of the piping and of the detection systems
(7) Make and type of discharge devices, operating equipment, and foam concentrate to be installed
(8) Location and spacing of discharge devices
(9) Pipe hanger and bracing location and installation details
(10) Location of draft curtains
(11) Accurate and complete layout of the area to be protected, including drainage layout
(12) Details of any foam concentrate, its storage and injection, and other pertinent data to provide a clear explanation of the proposed design
(13) Location and spacing of supplementary or low-level agent distributors, showing the area of coverage
(14) Installation layout of the actuation systems
(15) Detailed layout of water supply piping, agent storage, pumping and piping, power sources, and location and details of mechanical foam-liquid concentrate injection equipment

6.2.2 Deluge Foam-Water Sprinkler System Design and Performance.

6.2.2.1 In aircraft storage and servicing areas, each sprinkler system shall be designed in accordance with NFPA 13 and NFPA 16, as applicable, and in accordance with this chapter.

6.2.2.2* In aircraft storage and servicing areas, the maximum projected floor area under an individual deluge system shall not exceed 1394 m² (15,000 ft²).
6.2.2.3 In aircraft storage and servicing areas, the protection area as projected on the floor shall be limited to 12 m² (130 ft²). The maximum distance between sprinklers either on branch lines or between branch lines shall be 3.7 m (12 ft). In buildings with storage bays 7.6 m (25 ft) wide, a distance of 3.8 m (12 ft 6 in.) shall be permitted.

6.2.2.4 System piping shall be hydraulically designed using two separate calculation methods.

6.2.2.4.1 The demand calculation method shall be performed to determine the adequacy of the water supply.

6.2.2.4.2 The supply calculation method shall be performed to determine the amount of foam concentrate required.

6.2.2.4.3 Where steel pipe is installed, the coefficient C in the Hazen–Williams formula shall be taken as 120 in the calculations.

6.2.2.5 In other portions of hangars protected by sprinklers, the spacing shall be in accordance with the hazard requirements of the areas involved.

6.2.2.6 Uniform sprinkler discharge shall be based on a maximum variation of 15 percent between the sprinkler providing the lowest density and the sprinkler providing the greatest density within an individual deluge system as specified in 6.2.2.12 or 6.2.2.13.

6.2.2.6.1 Local application protection for columns shall not be required to comply with the maximum variation of 15 percent.

6.2.2.6.2 Variation below the required density shall not be permitted.

6.2.2.6.3 Orifice plates, sprinklers of different orifice sizes, piping of less than 25.4 mm (1 in.) diameter, or multiple fittings installed between a branch line fitting and an individual sprinkler for the sole purpose of increasing pressure loss shall not be permitted as a means to limit discharge.

6.2.2.7 Where open hangar doors result in interference with the distribution of overhead systems, additional devices shall be provided to ensure required floor coverage.

6.2.2.8 Foam-water deluge systems discharge devices shall be either air-aspirating or non-air-aspirating and have deflectors designed to produce water discharge patterns closely comparable to those of spray sprinklers as defined in NFPA 13 when discharging at the same rates of flow.

6.2.2.9 The discharge devices shall generate foam where supplied with the foam solution under pressure and shall distribute the foam in a pattern essentially equal to that of water discharging therefrom.

6.2.2.10 The discharge devices shall have a minimum nominal 6.4 mm (¼ in.) orifice and shall be listed for use with the particular type of foam concentrate to be used in the system.

6.2.2.11 Strainers shall be installed in accordance with NFPA 16.

6.2.2.12 The discharge density from air-aspirating discharge devices using protein foam, fluoroprotein foam, or aqueous film-forming foam (AFFF) solutions shall be a minimum of 8.1 L/min/m² (0.20 gpm/ft²) of floor area.

6.2.2.13 The discharge density from non-air-aspirating discharge devices using AFFF solution shall be a minimum of 6.5 L/min/m² (0.16 gpm/ft²) of floor area.

6.2.3 Supplementary Protection Systems.

6.2.3.1* Hangars protected in accordance with 6.1.1(1) and housing aircraft having wing areas in excess of 279 m² (3000 ft²) shall be protected with a listed supplementary protection system.

6.2.3.2* Each system shall be designed to cover a specified floor area beneath the aircraft being protected. The design objective shall be to achieve control of the fire within the protected area within 30 seconds of system actuation and extinguishment of the fire within 60 seconds.

6.2.3.3 Each supplementary protection system shall be designed, installed, and maintained in accordance with NFPA 11.

6.2.3.4 Supplementary Low-Expansion Foam Systems.

6.2.3.4.1 Supplementary low-expansion foam systems shall employ AFFF, protein, or fluoroprotein foam–liquid concentrates and shall be designed for local application.

6.2.3.4.2* Where oscillating nozzles are used, the discharge pattern shall be established for the design. Positive security of the limits of oscillation shall be provided by such devices as set screws, locking pins, or other approved methods. When placed in service, the manual override feature, if any, shall be locked out to provide for automatic operation only.

6.2.3.4.3 Where protein- or fluoroprotein-based concentrates are used, the minimum application rate of foam solution shall be 6.5 L/min/m² (0.16 gpm/ft²) of floor area beneath the wings and wing center section of the aircraft. Where AFFF concentrate is used, the minimum application rate shall be 4.1 L/min/m² (0.10 gpm/ft²) of floor area beneath the wings and wing center section of the aircraft.

6.2.3.4.4 If any nozzles are removed to allow movement of the aircraft, removal of the nozzles shall not reduce the effectiveness of the remaining system.

6.2.3.4.5 Electric power reliability for oscillating nozzles shall be in accordance with electric fire pump requirements of NFPA 20.

6.2.3.4.6 Where monitor-type nozzles are used, an individual manual control valve shall be provided for each unit. This valve shall be supervised.

6.2.3.5 Supplementary High-Expansion Foam Systems.

6.2.3.5.1 Supplementary high-expansion foam systems shall utilize surfactants as the foaming ingredient and shall be designed for local application.

6.2.3.5.2* These systems shall be designed to discharge at a rate to cover the protected area to a depth of at least 0.9 m (3 ft) within 1 minute.

6.2.3.5.3 Discharge rates shall take into consideration the sprinkler breakdown factor required in 6.12.8.2.2(2) of NFPA 11.

6.2.3.5.4 The foam generators shall be located at the ceiling or on exterior walls in such a way that only air from outside the aircraft storage and servicing area can be used for foam generation. Roof vents shall be located to avoid recirculation of combustion products into the air inlets of the foam generators.

6.2.3.5.5* Generators shall be powered by reliable water-driven or electric motors. Electric power reliability for generators shall be in accordance with electric fire pump requirements of NFPA 20.
6.2.4 Closed-Head Water Sprinkler Systems for Aircraft Storage and Servicing Areas.

6.2.4.1* Sprinkler systems shall be either wet pipe or preaction, designed and installed in accordance with the applicable sections of NFPA 13 and the provisions of this chapter.

6.2.4.2 Sprinkler piping shall be hydraulically sized in accordance with NFPA 13. The maximum system size shall not exceed 4831 m² (52,000 ft²).

6.2.4.3 Sprinkler spacing shall be as specified in 6.2.2.3.

6.2.4.4 Where open hangar doors result in interference with the distribution of water from the hangar sprinkler systems, additional sprinklers shall be provided to ensure required floor coverage.

6.2.4.5 The design density of water from sprinkler systems shall be a minimum of 6.9 L/min/m² (0.17 gpm/ft²) over any 1394 m² (15,000 ft²) area, including the hydraulically most demanding area as defined in NFPA 13.

6.2.4.6 Sprinklers shall be nominal K-80 (K-5.6) or K-115 (K-8.0) sprinklers.

6.2.4.7 Quick-response sprinklers having a temperature rating of 79.4°C (175°F) shall be used. Quick-response sprinklers having a temperature rating of 93.3°C (200°F) shall be permitted in areas subject to high ambient temperatures.

6.2.4.8 Sprinkler systems shall be flushed and tested in accordance with NFPA 13.

6.2.5 Low-Level Foam Protection Systems.

6.2.5.1 Hangars protected in accordance with 6.1.1(2) or 6.1.1(3) shall be protected with a listed low-level foam protection system.

6.2.5.2 Each low-level foam protection system shall be designed, installed, and maintained in accordance with NFPA 11.

6.2.5.3* The low-level foam system shall be designed to achieve distribution of foam over the entire aircraft storage and service area. The design objective shall be to achieve coverage of the entire aircraft storage and servicing area to within 1.5 m (5 ft) of the perimeter walls and doors within 3 minutes of system actuation.

6.2.5.4 Low-Level Low-Expansion Foam Systems. Foam systems shall be of the fixed type and shall be designed and installed in accordance with the requirements for fixed-type systems in NFPA 11.

6.2.5.4.1 Where AFFT concentrate is used, the minimum application rate of foam solution shall be 4.1 L/min/m² (0.10 gpm/ft²). The minimum application rate of foam solution shall be 6.5 L/min/m² (0.16 gpm/ft²) where protein-based or fluoro protein-based concentrate is used.

6.2.5.4.2* The discharge rate of the system shall be based on the rate of application multiplied by the entire aircraft storage and servicing floor area.

6.2.5.4.3 The foam system shall use low-level discharge nozzles. Where monitor nozzles are used, they shall be provided with individual manual shutoff valves for each nozzle. The discharge nozzles shall be arranged to achieve initial foam coverage in the expected aircraft parking area.

6.2.5.4.4* Nozzles shall be located and installed so that aircraft positioning and work stand placement will not necessitate removal or repositioning of nozzles. All nozzle settings shall be marked and permanently secured in position after installation and acceptance testing.

6.2.5.4.5 Electric power reliability for oscillating nozzles shall be in accordance with electric fire pump requirements of NFPA 20.

6.2.5.5 Low-Level High-Expansion Foam Systems.

6.2.5.5.1 Low-level high-expansion foam systems shall be designed and installed in accordance with requirements for local application systems of NFPA 11.

6.2.5.5.2 The application rate shall be a minimum of 0.9 m³/min/m² (3 ft³/min/ft²).

6.2.5.5.3 The discharge rate of the system shall be based on the application rate multiplied by the entire aircraft storage and servicing floor area. The application total discharge rate shall include the sprinkler breakdown factor specified in 6.12.8.2.2(2) of NFPA 11.

6.2.5.5.4 The high-expansion foam generators shall be arranged to achieve initial foam coverage in the expected aircraft parking area.

6.2.5.5.5 Foam generators shall be supplied with air from outside the aircraft storage and servicing area. Roof vents shall be located to avoid recirculation of combustion products into the air inlets of the foam generators.

6.2.5.5.6* Foam generators shall be powered by reliable water-driven or electric motors. Electric power reliability for foam generators shall be consistent with electric fire pump requirements specified in Chapters 6 and 7 of NFPA 20.

6.2.6* Foam Concentrate Supply. The friction losses in piping carrying foam concentrate shall be calculated using the Darcy formula, also known as the Fanning formula.

6.2.6.1* The quantities of low-expansion foam concentrate, either protein foam, fluoroprotein, or AFFF, shall be large enough for a 10-minute foam discharge based on the supply calculation required in 6.2.2.4.

6.2.6.2* The quantity of high-expansion foam concentrate shall be large enough for a 10-minute foam discharge at the water flow rate based on the supply calculation method required in 6.2.2.4.

6.2.6.3 A reserve supply of foam concentrate of compatible type for the system shall be directly connected to the system and immediately available. The reserve supply shall be in the same quantity as the main supply. To prevent accidental depletion of this reserve supply, it shall be available to the system only by intentional manual operation.

6.2.6.4 Control valves, foam concentrate liquid storage tanks, concentrate pumps, controllers, and bypass balancing equipment shall be located outside the aircraft storage and service area.

6.2.7 Foam Concentrate Pumps.

6.2.7.1 Foam concentrate pump installations shall comply with the applicable provisions of NFPA 20, except as modified by this standard.

6.2.7.2* Where foam concentrate is introduced into the water stream by pumping, the total foam concentrate pumping capacity shall be such that the maximum flows and pressures are met with the largest foam concentrate pump out of service.
The reserve pump(s) shall be arranged to operate only upon failure of the primary pump(s).

6.2.7.3 Piping shall be arranged so that maximum foam concentrate demand shall be supplied by any foam concentrate pump from either primary or reserve foam concentrate tanks.

6.2.7.4 Foam concentrate pumps shall be provided with means of pressure relief from the pump discharge to prevent excessive pressure and temperature. Discharge from the relief valve shall be piped back to the foam concentrate storage tank. Connection to the suction piping shall not be permitted.

6.2.7.5 The pressure regulating valve shall not be used as the pressure relief valve.

6.2.7.6 Foam concentrate pumps shall be started automatically by either a pressure drop in the foam concentrate piping system or a signal from the detection system control panel.

6.2.7.7 A pressure maintenance pump shall be provided to maintain pressure in the foam concentrate piping system where foam concentrate lines to the protective system injection points are run underground or where they run above-ground for more than 15 m (50 ft).

6.2.7.8 Once started, foam concentrate pumps shall be arranged to run continuously until stopped manually. There shall be an audible “pump running” alarm in a constantly attended location.

6.2.7.9 Power supply for the drivers of foam concentrate pumps shall be installed in accordance with NFPA 20 and NFPA 70. Power supplies shall be arranged such that disconnecting power to the protected facility during a fire shall not disconnect the power supply to the foam concentrate pump feeder circuit.

6.2.7.10 Controllers for foam concentrate pumps shall be as follows:

(1) For electric-drive foam concentrate pumps greater than 22.4kW (30 horsepower), a listed electric foam pump controller shall be used.

(2) For electric-drive foam concentrate pumps not exceeding 22.4kW (30 horsepower), a listed electric foam pump controller or limited-service foam pump controller shall be used.

(3) For diesel engine-driven foam concentrate pumps, a listed fire pump controller shall be used.

6.2.8 Detection and Actuation System Design.

6.2.8.1 General.

6.2.8.1.1 Actuation systems shall be provided with complete circuit supervision and shall be arranged in accordance with Section 6.4.

6.2.8.1.2 These detectors shall be installed in accordance with NFPA 72.

6.2.8.1.3 Detection systems shall be provided with supervision as required by NFPA 72.

6.2.8.2 Deluge Foam-Water Sprinkler Systems.

6.2.8.2.1 Detectors for actuating the deluge foam-water sprinkler systems shall be rate-of-rise, fixed-temperature, or rate-compensation types.

6.2.8.2.2 Manual actuation stations shall be located so that each system can be individually operated from both inside and outside the aircraft storage and servicing area. The manual stations shall be installed so that they are unobstructed, readily accessible, and located in the normal paths of exit from the area.

6.2.8.3 Supplementary Protection Systems.

6.2.8.3.1 Actuation of any deluge foam-water sprinkler system shall simultaneously operate the supplementary protection system.

6.2.8.3.2 Manual actuation stations shall be provided for each supplementary protection system and shall be located both inside and outside the aircraft maintenance and servicing area. Stations shall be located as close as possible to the aircraft positions to facilitate early system actuation in the event of a fire.

6.2.8.4 Closed-Head Water Sprinkler Systems. Where preaction sprinkler systems are provided, detectors for actuating the systems shall be rate-of-rise, fixed-temperature, or rate-compensation type.

6.2.8.5 Low-Level Foam Protection Systems.

6.2.8.5.1 Actuation of any closed-head sprinkler system shall simultaneously operate the low-level foam protection system.

6.2.8.5.2 Manual actuation stations shall be provided for each low-level protection system and shall be located both inside and outside the aircraft maintenance and servicing area. Stations shall be located as close as possible to the aircraft positions to facilitate early system actuation in the event of a fire.

6.2.9 Hand Hose Systems.

6.2.9.1 Hand hose systems shall be installed in every hangar to provide for manual fire control.

6.2.9.2 The hand hose systems shall be arranged to permit application of water or other extinguishing agents on each side and into the interior of the aircraft located in each aircraft storage and servicing area. At least two hose lines shall be designed to be operated simultaneously.

6.2.9.3 Foam-Water Hand Hose Systems.

6.2.9.3.1 Foam-water hand hose systems shall be installed in aircraft storage and servicing areas.

6.2.9.3.1.1 Where aircraft storage and servicing areas house only unfueled aircraft, as defined in 3.3.15, hand hose systems shall be provided in accordance with 6.2.9.4 of this standard.

6.2.9.3.2 The systems shall conform with the applicable portions of NFPA 14 and NFPA 11.

6.2.9.3.3 These hand hose systems shall be supplied from a connection to the sprinkler system header or from a direct connection to the water source.

6.2.9.3.4 Each hand hose connection shall be a minimum of 38 mm (1½ in.) in size and fitted with a control valve. The hose shall be of a diameter to provide a minimum flow of 227 L/min (60 gpm).

6.2.9.3.5 The hose shall be installed on an approved rack or reel. Hose shall be fitted with an approved foam-maker nozzle or a combination-type nozzle designed to permit foam application or water spray. Nozzles shall be of the shutoff type or shall have a shutoff valve at the nozzle inlet.
6.2.9.3.6 Foam–liquid concentrate shall be permitted to be supplied from a central distribution system, separate from or a part of a foam-water sprinkler system, or from stationary foam–liquid concentrate containers fitted with listed proportioning devices.

6.2.9.3.7 The minimum supply of foam–liquid concentrate shall be large enough to provide operation of at least two hand hose lines for a period of 20 minutes at a foam solution discharge rate of 227 L/min (60 gpm) each.

6.2.9.4 Water Hand Hose Systems.

6.2.9.4.1 Water hand hose and standpipe systems shall be installed in accordance with NFPA 14 in all shop, office, and non-aircraft-storage areas in hangars, except where special hazards that require special protection exist.

6.2.9.4.2 Hoses shall be fitted with listed adjustable stream pattern nozzles designed to permit straight stream or water spray application.

6.2.10 Water Supply.

6.2.10.1* At least one automatic water supply capable of supplying all required or installed fire suppression systems that are designed to operate simultaneously, including, but not limited to, sprinkler systems, foam-generating systems, and hand hose lines, shall be provided.

6.2.10.2 Deluge Foam–Water Sprinkler Systems.

6.2.10.2.1* The water supply shall be capable of furnishing water for the largest number of systems that are designed to operate. Sufficient water supply requirements are determined by assuming that a fire at any point will operate all the systems in every draft-curtained area that is wholly or partially within a 30 m (100 ft) radius of that point measured horizontally.

6.2.10.2.2 The water supply shall be capable of maintaining water discharge at the design rate and pressure for a minimum of 60 minutes, covering the entire area protected by systems expected to operate simultaneously, unless protection is provided as specified in 6.2.10.3.

6.2.10.3 Supplementary Protection Systems. Where supplementary protection is installed in accordance with 6.2.5, the total water supply duration shall be for a minimum of 45 minutes.

6.2.10.4 Closed-Head Water Sprinkler Systems and Low-Level Foam Protection Systems. The water supply for the combination of closed-head water sprinkler systems and low-level foam protection systems shall have a minimum duration of 45 minutes.

6.2.10.5 Hand Hose Systems. The water supply for hand hose systems shall be capable of satisfying the requirements of 6.2.9 of this standard. The demand shall be calculated at the point where supply piping for the hand hose systems connects to the system piping or fire protection underground.

6.2.10.6 Exterior Hose Streams. Where the water supply for the systems also serves as a supply for exterior hose streams, a hose stream allowance of 1893 L/min (500 gpm) shall be included in the water supply hydraulic calculations. Calculations for hose stream shall be in accordance with NFPA 15.

6.2.10.7* Water Reservoirs. Where a single reservoir is used for the basic water supply, such reservoir shall be divided into approximately equal sections, arranged so that at least one-half of the water supply will always be maintained in service in order to increase the reliability of the water supply. The suction line from each section shall be sized to deliver the maximum water supply requirement.

6.2.10.8 Fire Pumps.

6.2.10.8.1 Fire pumps shall be installed in accordance with NFPA 20 and in accordance with the provisions of 6.2.10.8.2 through 6.2.10.8.6.

6.2.10.8.2 The total pumping capacity shall be such that the maximum demand is met with the largest fire pump out of service.

6.2.10.8.3 Pump houses and rooms shall be of fire-resistive or noncombustible construction. Where internal combustion engines used for driving fire pumps are located inside the fire pump house or room, protection shall be provided by automatic sprinklers installed in accordance with NFPA 13.

6.2.10.8.4* Fire pumps shall be started automatically by either a drop in water pressure or a signal from the detection control panel. Where two or more fire pumps are used, they shall be provided with automatic sequential starting.

6.2.10.8.5 Where pressure is used as the starting sequence for fire pumps, a small auxiliary pressure maintenance pump or other suitable means to maintain normal system pressures shall be provided.

6.2.10.8.6 Once started, fire pumps shall be arranged to run continuously until they are stopped manually. There shall be an audible “pump running” alarm in a constantly attended area.

6.2.10.9* Flushing Underground Pipe. Underground mains and each lead-in connection shall be flushed as specified in NFPA 15.

6.2.11 Acceptance Tests. The following tests shall be performed prior to final acceptance of any fire protection system in an aircraft hangar.

6.2.11.1 Hydrostatic pressure tests shall be conducted on each system as specified in NFPA 11, NFPA 13, NFPA 14, or NFPA 16, as applicable.

6.2.11.2 All devices and equipment installed as part of the system shall be tested.

6.2.11.3 Full-flowing tests with water only shall be made on each foam-water deluge system as a means of checking the sprinkler distribution and to ensure against clogging of piping and sprinklers by foreign matter carried by the water. The maximum number of systems that are designed to operate in case of fire, including supplementary systems, shall be in full operation simultaneously to provide a check on the adequacy and condition of the water supply. Suitable gauge connections and gauges shall be provided to verify hydraulic calculations.

6.2.11.4 The smallest single foam-water deluge system shall be discharged using foam concentrate. This test shall be run for a length of time to stabilize discharge before test samples are taken to determine foam concentrate percentage.

6.2.11.5 The maximum number of systems expected to operate shall be simultaneously discharged with foam. This test shall be run for a length of time to stabilize discharge before test samples are taken to determine foam concentrate percentage.
6.2.11.6 Any proportioner not tested under the requirements of 6.2.11.4 or 6.2.11.5 shall be individually tested with foam concentrate to determine concentrate percentage.

6.2.11.7 Supplementary and low-level protection systems shall be subjected to foam flow tests, with foam flowing simultaneously from the maximum number of sprinkler systems expected to operate, in order to ensure that the hazard is protected in conformance with the design specification and to determine whether the flow pressures, agent discharge capacity, foam coverage, percent concentration, and other operating characteristics are satisfactory.

6.2.11.7.1 Where separate proportioning systems are utilized for the foam-water deluge sprinklers and the supplementary protection systems, water only shall be permitted to be flowed in the foam-water deluge sprinkler systems simultaneously with foam in the supplementary protection system.

6.2.11.8 Supplementary and low-level protection systems shall be examined visually to determine that they have been installed correctly. Checks shall be made for such items in conformity with installation plans, continuity of piping, tightness of fittings, removal of temporary blank flanges, and accessibility of valves and controls. Devices shall be identified and operating instructions prominently posted.

6.2.11.9* The timing of the foam system discharge shall be measured beginning at the time of system actuation.

6.2.12 Final Approval. The installing company shall furnish a written statement that the work has been completed in accordance with 6.2.1 and tested in accordance with the provisions of 6.2.11.

6.2.13 Conversion of Existing Systems. In converting one type of system to another, all provisions of this chapter pertaining to new systems shall apply.

6.2.13.1 If water supplies are greater than necessary, the uniform discharge requirement of 6.2.2.6 shall be permitted to be waived if the required minimum discharge rate is available in all areas.

6.2.13.2 Where existing systems are designed with a discharge density higher than the minimum required discharge density [6.5 L/min/m² (0.16 gpm/ft²)], a proportionate reduction in the time of discharge shall be permitted but shall not be less than 7 minutes.

6.2.13.3 Converted systems shall be tested in accordance with 6.2.11.

6.3 Wheeled and Portable Extinguishers.

6.3.1 Wheeled and portable extinguishers shall be provided in accordance with NFPA 10.

6.3.2 In aircraft storage and servicing areas, the distribution of such devices shall be in accordance with the extra hazard classification outlined in NFPA 10.

6.3.3 The distribution of extinguishers in other areas of aircraft hangars shall be in accordance with light, ordinary, or extra hazard occupancy based on an analysis of each such room or area following the requirements of NFPA 10.

6.4* Protection System Alarms. In addition to local alarm service, alarms shall be transmitted to a constantly attended location.

Chapter 7 Protection of Group II Aircraft Hangars

7.1 General.

7.1.1 The protection of aircraft storage and servicing areas of Group II aircraft hangars shall be in accordance with any one of the following:

1. The provisions of Chapter 6, unless foam-water deluge systems utilizing air-aspirating discharge devices are installed for the protection of Group II aircraft hangars, in which case the discharge rate specified in 6.2.2.12 of this standard is permitted to be reduced to a minimum of 6.5 L/min/m² (0.16 gpm/ft²) of floor area

2. A combination of automatic sprinkler protection in accordance with Section 7.2 and an automatic, low-level, low-expansion foam system in accordance with Sections 7.3 and 7.4

3. A combination of automatic sprinkler protection in accordance with Section 7.2 and an automatic, high-expansion foam system in accordance with Sections 7.3 and 7.5

4. A closed-head foam-water sprinkler system in accordance with Section 7.6

7.1.2 Group II aircraft hangar storage and service areas housing unfueled aircraft shall be provided with automatic sprinkler protection as specified in Chapter 12.

7.1.3 Automatic closed-head sprinkler protection shall be provided inside separate shop, office, and storage areas located inside aircraft maintenance and servicing areas. The design shall be in accordance with hazard classifications specified in NFPA 13.

7.1.4 In addition to the provision for sprinkler and foam extinguishing systems as required by this chapter, protection as required by 6.2.9 and Sections 6.3 and 6.4 also shall be provided.

7.2 Closed-Head Water Sprinkler System for Aircraft Storage and Servicing Areas.

7.2.1* Sprinkler systems shall be either wet pipe or preaction, designed and installed in accordance with the applicable sections of NFPA 13 and the provisions of this chapter.

7.2.2 Sprinkler piping shall be hydraulically sized in accordance with NFPA 13.

7.2.3 Sprinkler spacing shall be as specified in 6.2.2.3.

7.2.4 Where open hangar doors result in interference with the distribution of water from the hangar sprinkler systems, additional sprinklers shall be provided to ensure required floor coverage.

7.2.5 The design density of water from sprinkler systems shall be a minimum of 6.9 L/min/m² (0.17 gpm/ft²) over any 46.4 m² (5000 ft²) area, including the hydraulically most demanding area as defined in NFPA 13.

7.2.6 Sprinklers shall be nominal K-80 (K-5.6) or K-115 (K-8.0) sprinklers.

7.2.7 Sprinklers shall have a temperature rating of 162°C to 190°C (325°F to 375°F).

7.2.8 Sprinkler systems shall be flushed and tested in accordance with NFPA 13.
7.3* Foam Concentrate — General. The friction losses in piping carrying foam concentrate shall be calculated using the Darcy formula, also known as the Fanning formula.

7.3.1 The foam concentrate supplied with the system shall be listed for use with the distribution equipment.

7.3.2 There shall be a reserve of foam concentrate of a compatible type directly connected to the system. The reserve supply shall be in the same quantity as the main supply. To prevent accidental depletion of this reserve supply, it shall be available to the system only by intentional manual operation.

7.3.3 Foam Concentrate Pumps.

7.3.3.1 Foam concentrate pump installations shall comply with the applicable provisions of NFPA 20, except as modified by this standard.

7.3.3.2 Where foam concentrate is introduced into the water stream by pumping, the total foam concentrate pumping capacity shall be such that the maximum flows and pressures are met with the largest foam concentrate pump out of service. The reserve pump(s) shall be arranged to operate only upon failure of the primary pump(s).

7.3.3.3 Piping shall be arranged so that maximum foam concentrate demand is supplied by any foam concentrate pump from either primary or reserve foam concentrate tanks.

7.3.3.4 Foam concentrate pumps shall be provided with means of pressure relief from the pump discharge to prevent excessive pressure and temperature. Discharge from the relief valve shall be piped back to the foam concentrate storage tank. Connection to the suction piping shall not be permitted.

7.3.3.5 The pressure-regulating valve shall not be used as the pressure relief valve. Foam concentrate pumps shall be started automatically by either a pressure drop in the foam concentrate piping system or a signal from the detection system control panel.

7.3.3.6 A pressure maintenance pump shall be provided to maintain pressure in the foam concentrate piping system where foam concentrate lines to the protective system injection points are run underground or where they run aboveground for more than 15 m (50 ft).

7.3.3.7 Once started, foam concentrate pumps shall be arranged to run continuously until stopped manually. There shall be an audible “pump running” alarm in a constantly attended location.

7.3.3.8 Power supply for the drivers of foam concentrate pumps shall be installed in accordance with NFPA 20 and NFPA 70. Power supplies shall be arranged such that disconnecting power to the protected facility during a fire shall not disconnect the power supply to the foam concentrate pump feeder circuit.

7.3.3.9 Controllers for foam concentrate pumps shall be as follows:

1. For electric-drive foam concentrate pumps greater than 22.4 kW (30 horsepower), a listed fire pump controller shall be used.

2. For electric-drive foam concentrate pumps greater than 11 kW (15 horsepower) but not exceeding 22.4 kW (30 horsepower), a listed fire pump controller or listed limited service controller shall be used.

3. For electric foam concentrate pumps less than 11 kW (15 horsepower), a listed limited service controller shall be used.

4. For diesel engine–drive foam concentrate pumps, a listed fire pump controller shall be used.

7.3.4 The control valves, foam–liquid concentrate storage, injection system, and foam concentrate pump shall be located outside aircraft storage and servicing areas.

7.3.5 Plans and specifications for closed-head foam-water sprinkler systems shall provide the information required by 6.2.1 of this standard and NFPA 16. Plans and specifications for other foam extinguishing systems shall provide the information required by 6.2.1.

7.3.6 Acceptance Tests.

7.3.6.1 Acceptance tests for closed-head foam-water sprinkler systems shall be performed in accordance with NFPA 16.

7.3.6.2 Acceptance tests for foam extinguishing systems shall be performed in accordance with 6.2.11.1, 6.2.11.2, 6.2.11.6, and 6.2.11.8.

7.3.6.2.1 The systems shall be subjected to flow tests, with foam flowing from the maximum number of foam distributors expected to operate, in order to ensure that the hangar is protected in conformance with the design specifications and to determine if the flow pressures, agent discharge capacity, foam coverage, and percentage of concentration are satisfactory.

7.3.6.2.1.1 A flow test shall be performed with only the foam system operating.

7.3.6.2.1.2 A flow test shall be performed with the foam system operating at the design pressure with the sprinkler system and hose demand.

7.3.6.3* The timing of foam system discharge shall be measured beginning at the time of system actuation.

7.3.7 The installing company shall furnish a written statement to the effect that the work has been completed in accordance with approved plans and specifications and tested in accordance with the provisions of 7.3.6.

7.4* Low-Expansion Foam System.

7.4.1 Foam systems shall be of the fixed type and shall be designed and installed in accordance with the requirements for fixed-type systems in NFPA 11.

7.4.2 The minimum application rate of foam solution shall be 6.5 L/min/m² (0.16 gpm/ft²) where protein-based or fluoroprotein-based concentrate is used. Where AFFF concentrate is used, the minimum application rate of foam solution shall be 4.1 L/min/m² (0.10 gpm/ft²).

7.4.3* The discharge rate of the system shall be based on the rate of application multiplied by the entire aircraft storage and servicing floor area.

7.4.4 The foam system shall use low-level monitor-type discharge nozzles, with individual manual shutoff valves for each nozzle. The discharge nozzles shall be arranged to achieve initial foam coverage in the expected aircraft parking area.

7.4.5* The quantity of foam concentrate shall be calculated for a 10-minute discharge at the water flow rate based on the supply calculation method.
7.4.6 The low-level foam system shall be designed to achieve distribution of foam over the entire aircraft storage and service area. The design objective shall be to achieve coverage of the entire aircraft storage and servicing area to within 1.5 m (5 ft) of the perimeter walls and doors within 3 minutes of system actuation.

7.5 High-Expansion Foam System.

7.5.1 High-expansion foam systems shall be designed and installed in accordance with the requirements for local application systems of NFPA 11.

7.5.2 The high-expansion foam generators shall be arranged to achieve initial foam coverage in the anticipated aircraft parking area.

7.5.3 The application rate shall be a minimum of 0.9 m³/min/m² (3 ft³/min / ft²).

7.5.4 The discharge rate of the system shall be based on the application rate multiplied by the entire aircraft storage and servicing floor area. The application total discharge rate shall include the sprinkler breakdown factor specified in 2.3.5.2(b) of NFPA 11.

7.5.5 Foam generators shall be supplied with air from outside the aircraft storage and servicing area. Roof vents shall be located to avoid recirculation of combustion products into the air inlets of the foam generators.

7.5.6 Foam generators shall be powered by reliable water-driven or electric motors. Electric power reliability for both foam generators and foam concentrate pumps shall be consistent with electric fire pump requirements specified in Chapters 6 and 7 of NFPA 20.

7.5.7 The quantity of foam concentrate shall be calculated to operate the system at the required discharge rate as determined in 7.5.4 for a period of at least 12 minutes.

7.5.8 The low-level foam system shall be designed to achieve distribution of foam over the entire aircraft storage and service area. The design objective shall be to achieve coverage of the entire aircraft storage and servicing area to within 1.5 m (5 ft) of the perimeter walls and doors within 3 minutes of system actuation.

7.6 Closed-Head Foam-Water Sprinkler System.

7.6.1 Closed-head foam-water sprinkler systems shall be designed and installed in accordance with NFPA 16.

7.6.1.1 AFFF shall be used.

7.6.2 The minimum discharge density shall be 6.5 L/min/m² (0.16 gpm/ft²) of foam solution over the entire storage and service area.

7.6.3 Sprinkler spacing shall not exceed 9.3 m² (100 ft²) as projected on the floor. The maximum distance between sprinklers either on branch lines or between branch lines shall be 3.7 m (12 ft). In buildings with storage bays that are 7.6 m (25 ft) wide, 3.8 m (12 ft 6 in.) shall be permitted.

7.6.4 In aircraft storage and servicing areas, the maximum projected floor area under an individual sprinkler system spacing shall not exceed 1393 m² (15,000 ft²).

7.6.4.1 Each individual system shall have its own foam concentrate proportioner.

7.6.5 Sprinklers shall have a temperature rating of 79.4°C to 107.2°C (175°F to 225°F). Foam generators shall be powered by reliable water-driven or electric motors. Electric power reliability for both foam generators and foam concentrate pumps shall be consistent with electric fire pump requirements specified in Chapters 6 and 7 of NFPA 20.

7.6.7* Branch lines shall be provided with provisions for flushing in accordance with NFPA 25 and NFPA 11.

7.6.7.1 Drains shall be a minimum of 25.4 mm (1 in.) in size.

7.7 Detection and Actuation Systems.

7.7.1 Detectors for actuating high- or low-expansion foam systems and for actuating preaction sprinkler systems shall be rate-of-rise, fixed-temperature, or rate-compensation type.

7.7.2 These detectors shall be installed in accordance with NFPA 72.

7.7.3 Detection systems shall be provided with supervision as required by NFPA 72.

7.7.4 Manual actuation stations shall be located so that each system can be individually operated from both inside and outside the aircraft storage and servicing area. The manual stations shall be installed so that they are unobstructed, readily accessible, and located in the normal paths of exit from the area.

7.8* Water Supply.

7.8.1 The total water supply shall be calculated to satisfy the combination of systems and hose stations as described in 7.1.1(2), 7.1.1(3), and 7.1.3 for durations as specified in Section 7.8.2 through 7.8.8.

7.8.2 The water supply for closed-head water sprinkler systems in aircraft storage and servicing areas shall have a minimum duration of 30 minutes at the rate specified in 7.2.5.

7.8.3 The water supply for low-expansion foam systems shall be capable of furnishing water at the rate specified in 7.4.2 for a period of time equal to at least twice the period of time used to calculate the quantity of foam–liquid concentrate in 7.4.5.

7.8.4 The water supply for high-expansion foam systems shall be capable of furnishing water at the rate specified in 7.5.3 for a minimum period of 24 minutes.

7.8.5 The water supply for closed-head foam-water sprinkler systems shall have a minimum duration of 30 minutes at the rate specified in 7.6.2.

7.8.6 The water supply for hose stations shall be capable of satisfying the requirements of 6.2.9 of this standard, in addition to those requirements specified in 7.8.2 and either 7.8.3 or 7.8.4. The demand shall be calculated at the point where supply piping for the hose stations connects to the system piping or fire protection underground.

7.8.7 Where the water supply for the systems also serves as a supply for exterior hose streams, a hose stream allowance of 1893 L/min (500 gpm) shall be included in the water supply hydraulic calculations. Calculations for hose stream shall be in accordance with NFPA 13.

7.8.8 Where provided, fire pumps and suction reservoirs shall be designed and installed in accordance with 6.2.10.7 and 6.2.10.8.
Chapter 8
Group III Aircraft Hangars

8.1 Construction.

8.1.1* Group III hangars shall be constructed of any of the types of construction specified in NFPA 220.

8.1.2 Group III hangars shall be limited to one story. Where a Group III hangar as defined in 4.1.3 and 4.1.4 exceeds one story, the hangar shall be designated as a Group II hangar.

8.1.3 The surface of the grade floor of aircraft storage and servicing areas, regardless of type of hangar construction, shall be noncombustible and above the grade of the approach or apron at the entrance to the hangar.

8.1.4 Hangar aprons shall slope away from the level of the hangar floors to prevent liquid on the apron surfaces from flowing into the hangars.

8.1.5 In hangar building clusters and in row hangars, a minimum of 15 cm (6 in.) high curbing shall be provided between each aircraft space to prevent the flow of liquid from one space to adjacent spaces.

8.1.5.1 Group III hangars protected with the fire protection specified in Chapter 7 shall be provided with floor drainage in accordance with Section 5.11.

8.1.6* Roof coverings shall be listed as Class C or better.

8.1.7 Exposed interior insulation attached to walls and roofs in an aircraft storage or servicing area of a hangar shall comply with the special provisions for aircraft storage hangars, interior wall and ceiling finish criteria of NFPA 101.

8.2 Separation and Internal Subdivisions.

8.2.1 For single hangar buildings, the clear-space distances specified in Table 8.2.1 shall be maintained on all sides of the single hangar. Where mixed types of construction are involved, the less fire-resistant type of construction shall be used to determine the clear space required. Where the minimum clear spaces specified in Table 8.2.1 are not met, the buildings shall be classified as a hangar building cluster.

Table 8.2.1 Clear-Space Distances for Single Hangar Buildings

<table>
<thead>
<tr>
<th>Type of Construction</th>
<th>Minimum Separation Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Type I (443) and (332)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (229)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (111), Type III (211), and Type IV (2HH)</td>
<td>15</td>
</tr>
<tr>
<td>Type II (000)</td>
<td>15</td>
</tr>
<tr>
<td>Type III (200)</td>
<td>15</td>
</tr>
<tr>
<td>Type V (111) and (000)</td>
<td>23</td>
</tr>
</tbody>
</table>

8.2.1.1 Where single hangar buildings adjoin each other and each has fire walls with a minimum rating of at least 2 hours, located so that fire areas shall not exceed the maximum areas specified in Table 4.1.3, no minimum separation distance shall be required. These buildings shall not be classified as a hangar building cluster.

8.2.2 Row hangars shall be divided by solid partitions having a fire resistance that meets or exceeds the exterior walls or roof, whichever is greater, so that no more than three aircraft spaces shall be within an enclosed area.

8.2.3 Partitions and ceilings separating aircraft storage and servicing areas from other areas, such as shops, offices, and parts storage areas, shall have at least a 1-hour fire resistance rating with openings protected by listed fire doors having a fire resistance rating of at least 45 minutes.

8.3 Hangar Building Clusters.

8.3.1 In hangar building clusters, Group III hangars within a cluster shall be limited in total area for the specific types of construction in accordance with Table 8.3.1. Where mixed types of construction are involved, the less fire-resistant type of construction shall be used to determine the maximum allowable area in accordance with the table.

Table 8.3.1 Maximum Fire Areas for Hangar Building Clusters

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Maximum Total Fire Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
</tr>
<tr>
<td>Type I (443) and (332)</td>
<td>5,574</td>
</tr>
<tr>
<td>Type II (229)</td>
<td>3,716</td>
</tr>
<tr>
<td>Type II (111), Type III (211), and Type IV (2HH)</td>
<td>2,787</td>
</tr>
<tr>
<td>Type II (000)</td>
<td>2,230</td>
</tr>
<tr>
<td>Type III (200)</td>
<td>2,230</td>
</tr>
<tr>
<td>Type V (111)</td>
<td>1,486</td>
</tr>
<tr>
<td>Type V (000)</td>
<td>929</td>
</tr>
</tbody>
</table>

8.3.2 Where the total area of all Group III hangars in a cluster exceeds that specified in Table 8.3.1, selected buildings in the hangar cluster shall be classified as Group II hangars and protected in accordance with Chapter 7 of this standard. These buildings shall be selected such that the total area of the unprotected Group III hangar buildings in the hangar cluster is below the maximum area allowed by Table 8.3.1 for the less fire-resistant type of construction.

8.3.3 For hangar building clusters, the clear-space distances specified in Table 8.3.3 shall be maintained on all sides of the hangar building clusters. Where mixed types of construction are involved, a less fire-resistant type of construction shall be used.
8.4 Heating and Ventilating.

8.4.1 Heating, ventilation, and air-conditioning equipment shall be installed, as applicable, in accordance with NFPA 90A, NFPA 91, and NFPA 54, except as hereinafter specifically provided.

8.4.2 No heating, ventilation, and air-conditioning equipment employing an open flame or glowing element shall be installed in aircraft storage and servicing areas or sections communicating therewith, except as provided for in 8.4.5.

8.4.3 Hangar heating plants that are fired with gas, liquid, or solid fuels not covered under 8.4.5, and that are not located in a detached building shall be located in a room separated from other parts of the hangar by construction having at least a 1-hour fire resistance rating.

8.4.3.1 This separated room shall not be used for any other hazardous purpose or combustible storage and shall have no direct access from the aircraft storage or servicing area.

8.4.3.2 Openings in the walls of such rooms communicating with other portions of the hangar shall be restricted to those necessary for ducts or pipes.

8.4.3.3 Penetrations of the 1-hour fire resistance-rated enclosure shall be firestopped with an approved material installed and capable of maintaining the required fire resistance rating for the enclosure.

8.4.3.4 Each such duct shall be protected with a listed automatic fire damper or door.

8.4.3.5 All air for combustion purposes entering such separated rooms shall be drawn from outside the building.

8.4.4* Heating, ventilating, and air-conditioning plants employing recirculation of air within aircraft storage and servicing areas shall have return air openings not less than 3 m (10 ft) above the floor. Supply air openings shall not be installed in the floor and shall be at least 152 mm (6 in.) from the floor measured to the bottom of the opening.

8.4.4.1 Where automatic fire protection systems are installed in aircraft storage and servicing areas, fans for furnace heating systems shall be arranged to shut down automatically by operation of the interior automatic fire protection system. One or more manual fan shutoff switches shall be provided. Shutoff switches shall be accessible and clearly placarded.

8.4.5 Suspended or Elevated Heaters.

8.4.5.1 Listed electric, gas, or oil heaters shall be permitted to be used if installed as specified in 8.4.5.2 through 8.4.5.4.

8.4.5.2 In aircraft storage and servicing areas, heaters shall be installed at least 3 m (10 ft) above the upper surface of wings or the upper surface of the engine enclosures of the highest aircraft that can be housed in the hangar. The measurement shall be made from the wing or engine enclosure, whichever is higher from the floor, to the bottom of the heater.

8.4.5.3 In shops, offices, and other sections of aircraft hangars communicating with aircraft storage or servicing areas, the bottom of the heaters shall be installed not less than 2.4 m (8 ft) above the floor.

8.4.5.4 Suspended or elevated heaters shall be located in all spaces of aircraft hangars so that they shall not be subject to injury by aircraft, cranes, movable scaffolding, or other ob-jects. Provision shall be made to ensure accessibility to suspended heaters for recurrent maintenance purposes.

8.4.6 Where a mechanical ventilating system is employed in hangars or shops, the ventilating system shall be installed in accordance with NFPA 90A and in accordance with the applicable provisions of Section 8.4.

8.4.7 Where blower and exhaust systems are installed for vapor removal, the systems shall be installed in accordance with NFPA 91.

8.5 Lighting and Electrical Systems.

8.5.1 Artificial lighting shall be restricted to electric lighting.

8.5.3* Electrical services shall be installed in compliance with the provisions for aircraft hangars contained in Article 513 of NFPA 70.

8.6 Lightning Protection. Where provided, lightning protection shall be installed in accordance with NFPA 780.

8.7 Grounding Facilities for Static Electricity.

8.7.1* Grounding facilities shall be provided for removal and control of static electrical accumulations on aircraft while aircraft are stored or are undergoing servicing in a hangar.

8.7.2 Floor-grounding receptacles shall be provided and shall be either grounded through individual driven electrodes or electrically bonded together in a grid system and the entire system grounded to underground metal piping or driven electrodes. Where driven electrodes are used, they shall consist of 15.9 mm (5/8 in.) diameter or larger metal rods driven at least 1.5 m (5 ft) into the ground. Floor-grounding receptacles shall be designed to minimize the tripping hazard.

8.7.3* Grounding wires shall be bare and of a gauge that will be satisfactorily durable to withstand mechanical strains and usage.

8.8 Exit and Access Requirements.

8.8.1 Means of egress from the aircraft hangar shall comply with NFPA 101.

8.8.1.1 Egress doors for personnel who do not require the opening of doors accommodating aircraft shall be provided in each partitioned space. Intervals between doors shall not exceed 45 m (150 ft) on all exterior walls or 30 m (100 ft) along interior walls.

8.8.2 Aisles and clear space shall be maintained to ensure access to sprinkler control valves, where provided, as well as standpipe hose, fire extinguishers, and other fire protection equipment.

8.9 Fire Protection for Group III Hangars.

8.9.1 Group III Fire Protection.

8.9.1.1* Fixed fire protection systems shall be installed where required by and in accordance with locally adopted building codes.

8.9.1.2* In addition to the requirement of 8.9.1.1, where hazardous operations, including fuel transfer, welding, torch cutting, torch soldering, doping, and spray painting, are performed in any Group III hangar, the Group III hangar shall be protected with the fire protection specified in Chapter 7 and also shall meet the requirements specified in 5.4.2.
Chapter 9 Group IV Aircraft Hangars

9.1* Construction.

9.1.1 When membrane-covered rigid-steel-frame structures are used for the construction of aircraft hangars, they shall be constructed in accordance with Chapter 9.

9.1.2 The hangar shall be limited to one story.

9.1.3 The hangar shall be limited to a single hangar fire area.

9.1.4 Where provided, roof drains shall be equipped with electrical elements to protect against ice buildup, which would prevent the drains from functioning. Such heating elements shall be served by on-site standby electrical power in addition to the public service electrical supply. In lieu of such heating elements, any other approved methods that protect against ice accumulation shall be permitted.

9.1.5 Membrane Materials.

9.1.5.1 Testing of membrane materials for compliance with the use of the categories of noncombustible and limited-combustible materials in accordance with 9.1.5 shall be performed on weathered membrane material.

9.1.5.2 Flame spread of all membrane materials exposed within the structure shall be Class A as defined in NFPA 101.

9.1.5.3 Flame Resistance. All membrane structure fabric shall meet the requirements of both the small-scale and large-scale tests contained in NFPA 701.

9.1.5.4 Where required by the authority having jurisdiction, confirmatory field tests shall be conducted using test specimens from the original material, which shall have been affixed at the time of manufacture to the exterior of the structure.

9.1.5.5 Material loading and strength shall be based on physical properties of the materials verified and certified by an approved testing laboratory.

9.1.5.6 The membrane roof for structures in climates subject to freezing temperatures and ice buildup shall be composed of two layers with an air space between the two layers through which heated air can pass, to guard against ice accumulation. In lieu of such construction, any other approved methods that protect against ice accumulations shall be permitted.

9.2 Internal Separations.

9.2.1 Mezzanines, tool rooms, and other enclosures within aircraft storage and servicing areas shall be constructed of noncombustible material or limited-combustible material as defined in NFPA 220 in all membrane-covered rigid-steel-frame-structure hangars.

9.2.2 Partitions and ceilings separating aircraft storage and servicing areas from all other areas, shops, offices, and parts storage areas shall have at least a 1-hour fire resistance rating with openings protected by listed fire doors or shutters having a minimum fire resistance rating of 45 minutes.

9.2.3 Where a storage and servicing area has an attached, adjoining, or contiguous structure, such as a lean-to, shop, office, or parts storage area, the wall common to both areas shall have at least a 1-hour fire resistance rating, with openings protected by listed fire doors having a minimum fire resistance rating of 45 minutes and actuated from both sides of the wall.

9.3 Clear Space Distance Around Hangars. Precautions shall be taken to ensure ready access to membrane-covered rigid-steel-frame-structure hangars from all sides. Separation shall be provided to reduce fire exposure between buildings. The minimum separation shall be 23 m (75 ft).

9.4 Aprons and Floors.

9.4.1 The surface of the grade floor of aircraft storage and servicing areas shall be noncombustible and above the grade of the approach or apron at the entrance to the hangar.

9.4.2 Hangar aprons shall slope away from the level of the hangar floors to prevent liquid on the apron surfaces from flowing into the hangars.

9.5 Doors.

9.5.1 In membrane-covered rigid-steel-frame-structure hangars with a hangar fire area greater than 1115 m² (12,000 ft²), hangar doors that accommodate aircraft shall be of noncombustible or limited-combustible construction.

9.5.2 The power source for hangar doors shall operate on independent circuits and shall not be de-energized when the main disconnect switches for general hangar power are shut off.

9.5.3 Vertical traveling doors shall be counterbalanced, and horizontal slide or accordion-type doors shall be arranged so that manual or auxiliary operation by means of winches or tractors, for example, is feasible.

9.5.4* In an area where freezing temperatures can occur, door tracks of the bottom edges of doors shall be protected by heating coils or equivalent means to prevent ice formation that might prevent or delay operation.

9.6 Curtains. Where curtains are used to enclose a work area, they shall be of a listed flame-retardant type.

9.7 Landing Gear Pits, Ducts, and Tunnels.

9.7.1 Landing gear pits, ducts, and tunnels that are located below floor level in membrane-covered rigid-steel-frame-structure hangars shall be designed on the premise that flammable liquids and vapors will be present at all times. Materials and equipment shall be impervious to liquids and shall be fire resistant or noncombustible.

9.7.2 Electrical equipment for all landing gear pits, ducts, and tunnels that are located below hangar floor level shall be approved for use in Class I, Division 1, Group D hazardous locations in compliance with Article 501 of NFPA 70.

9.7.3 All landing gear pits, ducts, and tunnels that are located below hangar floor level shall be provided with a positive mechanical exhaust ventilation system capable of providing a minimum rate of five air changes per hour during regular operations and be designed to discharge externally to the hangar.
9.7.4 Upon the detection of flammable vapors, the ventilation system shall be capable of providing a minimum ventilation rate of 30 air changes per hour for the landing gear pit and all associated ducts or tunnels.

9.7.5 The ventilation system shall be controlled by an approved continuous-reading combustible gas-analyzing system that is arranged to operate the ventilation system at the rate specified in 9.7.4 automatically upon detection of a specified flammable vapor concentration that is below the lower flammable limit (LFL). The detection system shall have sensors located throughout all ducts and tunnels.

9.7.6 Because entry of fuel, oil, and water into landing gear pits is inevitable, drainage or pumping facilities shall be provided. Water-trapped vapor seals and separator fuel traps shall be provided. Where automatic pumping facilities are necessary, they shall be approved for use with aviation fuel and water. The drainage shall be fully enclosed pipe runs if drainage is routed through ventilation or access tunnels to external discharge points.

9.7.7 Explosion protection shall be provided in landing gear pits and communicating ducts and tunnel areas in the form of pressure relief venting or by a listed explosion prevention system installed in accordance with NFPA 69.

9.7.8 An approved fire protection system shall be installed to protect each pit unless the hangar fire protection required by Section 9.14 is designed to protect each pit.

9.8 Exposed Interior Insulation. Exposed interior insulation attached to walls and roofs in the aircraft storage and servicing area of a hangar shall comply with the requirements of the special provisions for aircraft storage hangars, interior wall and ceiling finish criteria of NFPA 101.

9.9 Drainage of Aprons and Hangar Floors. The drainage of aprons and hangar floors of hangars with a hangar fire area greater than 1115 m² (12,000 ft²) shall be as specified in Section 5.11.

9.10 Heating and Ventilating. Heating, ventilating, and air-conditioning equipment of membrane-covered rigid-steel-frame-structure hangars shall be installed, as applicable, in accordance with Section 5.12.

9.11 Lighting and Electrical Systems.

9.11.1 Artificial lighting shall be restricted to electric lighting.

9.11.2 Electrical services shall be installed in compliance with the provisions for aircraft hangars contained in Article 513 of NFPA 70.

9.11.3 In hangars with aircraft storage and servicing areas greater than 1115 m² (12,000 ft²), housing other than unfueled aircraft, main distribution panels, metering equipment, and other electrical equipment shall be located in a room separated from the aircraft storage and servicing area by a partition having at least a 1-hour fire resistance rating. The partition shall not be penetrated except by electrical raceways, which shall be protected by approved sealing methods maintaining the same fire resistance rating as the partition.

9.12 Grounding Facilities for Static Electricity.

9.12.1 Membrane-covered rigid-steel-frame-structure hangars housing other than unfueled aircraft shall be provided with grounding facilities for the removal and control of static electrical accumulations on aircraft while aircraft are stored or undergoing servicing in a hangar.

9.12.2 Floor-grounding receptacles shall be provided. The receptacles shall be either grounded through individual driven electrodes or electrically bonded together in a grid system and the entire system grounded to underground metal piping, such as cold water piping, or driven electrodes. Where driven electrodes are used, they shall consist of 15.9 mm (5/8 in.) diameter or larger metal rods driven at least 1.5 m (5 ft) into the ground. Floor-grounding receptacles shall be designed to minimize the tripping hazard.

9.12.3* Grounding wires shall be bare and of a gauge that is satisfactorily durable to withstand mechanical strains and usage.

9.13 Exit and Access Requirements.

9.13.1.1 Egress doors for personnel that do not require the opening of doors accommodating aircraft shall be provided in each partitioned space. Intervals between doors shall not exceed 45 m (150 ft) on all exterior walls or 30 m (100 ft) along interior walls.

9.13.2 Aisles and clear space shall be maintained to ensure access to sprinkler control valves, standpipe hose fire extinguishers, and other fire protection equipment.

9.14.1 The protection of aircraft storage and servicing areas for membrane-covered rigid-steel-frame-structure hangars having a hangar fire area greater than 1115 m² (12,000 ft²) and housing fueled aircraft shall be in accordance with any of the following:

(1) A low-expansion foam system as specified in 9.14.7.4

(2) A high-expansion foam system as specified in 9.14.7.5

9.14.2 The protection of aircraft storage and servicing areas for membrane-covered rigid-steel-frame-structure hangars having a hangar fire area greater than 1115 m² (12,000 ft²) and housing unfueled aircraft shall be in accordance with any of the following:

(1) A low-expansion foam system as specified in 9.14.7.4

(2) A high-expansion foam system as specified in 9.14.7.5

(3) Automatic sprinkler protection that complies with the following and Section 7.8 (for water supply):

(a) Closed-head water sprinkler system for aircraft storage and servicing areas. Sprinkler systems shall be either wet pipe or preaction, designed and installed in accordance with the applicable sections of NFPA 13 and the provisions of this chapter.

(b) Sprinkler piping shall be hydraulically sized in accordance with NFPA 13.

(c) Sprinkler spacing shall be as specified in 6.2.2.3.

(d) Where open hangar doors result in interference with the distribution of water from the hangar sprinkler systems, additional sprinklers shall be provided to ensure required floor coverage.

(e) The design density of water from sprinkler systems shall be a minimum of 6.9 L/min/m² (0.17 gpm/ft²) over any 464.5 m² (5000 ft²) area, including the hydraulically most demanding area as defined in NFPA 13.

9.14.7.1 Hangars protected in accordance with 6.1.1(1) or 6.1.1(2) shall be protected with a listed low-level foam protection system.

9.14.7.2 Each low-level foam protection system shall be designed, installed, and maintained in accordance with NFPA 11.

9.14.7.3 The low-level foam system shall be designed to achieve distribution of foam over the entire aircraft storage and servicing area. The design objective shall be to achieve coverage of the entire aircraft storage and servicing area within 3 minutes of system actuation.

9.14.7.4 Low-Level Low-Expansion Foam Systems. Foam systems shall be of the fixed type and shall be designed and installed in accordance with the requirements for fixed-type systems in NFPA 11.

9.14.7.4.1 Where AFFF concentrate is used, the minimum application rate of foam solution shall be 4.1 L/min/m² (0.10 gpm/ft²). The minimum application rate of foam solution shall be 6.5 L/min/m² (0.16 gpm/ft²) where protein-based or fluoroprotein-based concentrate is used.

9.14.7.4.2* The discharge rate of the system shall be based on the rate of application multiplied by the entire aircraft storage and servicing floor area.

9.14.7.4.3 The foam system shall use low-level discharge nozzles. Where monitor nozzles are used, they shall be provided with individual manual shutoff valves for each nozzle. The discharge nozzles shall be arranged to achieve initial foam coverage in the expected aircraft parking area.

9.14.7.4.4 Nozzles shall be located and installed so that aircraft positioning and workstand placement will not necessitate removal or repositioning of nozzles. All nozzle settings shall be marked and permanently secured in position after installation and acceptance testing.

9.14.7.4.5 Electric power reliability for oscillating nozzles shall be in accordance with electric fire pump requirements of NFPA 20.

9.14.7.5 Low-Level High-Expansion Foam Systems.

9.14.7.5.1 Low-level high-expansion foam systems shall be designed and installed in accordance with the requirements for local application systems of NFPA 11.

9.14.7.5.2 The application rate shall be a minimum of 0.9 m³/min/m² (3 ft³/min/ft²).

9.14.7.5.3 The discharge rate of the system shall be based on the application rate multiplied by the entire aircraft storage and servicing floor area. The application total discharge rate shall include the sprinkler breakdown factor specified in 6.12.8.2.2 of NFPA 11.

9.14.7.5.4 The high-expansion foam generators shall be arranged to achieve initial foam coverage in the expected aircraft parking area.

9.14.7.5.5 Foam generators shall be supplied with air from outside the aircraft storage and servicing area. Roof vents shall be located to avoid recirculation of combustion products into the air inlets of the foam generators.

9.14.7.5.6 Foam generators shall be powered by reliable water-driven or electric motors. Electric power reliability for

9.14.8.1 The quantities of low-expansion foam concentrate — protein foam, fluoroprotein foam, or AFFF — shall be calculated for a 10-minute foam discharge based on the supply calculation method.

9.14.8.2 The quantity of high-expansion foam concentrate shall be calculated for a 12-minute discharge at the water flow rate as determined in 9.14.7.5.3.

9.14.8.3 A reserve supply of foam concentrate of compatible type for the system shall be directly connected to the system and immediately available. The reserve supply shall be in the same quantity as the main supply. To prevent accidental depletion of this reserve supply, it shall be available to the system only by intentional manual operation.

9.14.8.4 Control valves, foam concentrate liquid storage tanks, concentrate pumps, controllers, and bypass balancing equipment shall be located outside the aircraft storage and servicing area.

9.14.9.1 Where foam concentrate is introduced into the water stream by pumping, the total foam concentrate pumping capacity shall be such that the maximum flows and pressures shall be capable of being met with the largest foam concentrate pump out of service. The reserve pump(s) shall be arranged to operate only upon failure of the primary pump(s).

9.14.9.2 Power supply for the drivers of foam concentrate pumps shall be installed in accordance with NFPA 20 and NFPA 70. Power supplies shall be arranged such that disconnecting power to the protected facility during a fire shall not disconnect the power supply to the foam concentrate pump feeder circuit.

9.14.9.3 Controllers for foam concentrate pumps shall be as follows:

(1) For electric-drive foam concentrate pumps greater than 22.4 kW (30 horsepower), a listed fire pump controller shall be used.

(2) For electric-drive foam concentrate pumps greater than 11 kW (15 horsepower) but not exceeding 22.4 kW (30 horsepower), a listed fire pump controller or listed limited-service controller shall be used.

(3) For electric-drive foam concentrate pumps less than 11 kW (15 horsepower), a listed limited-service controller shall be used.

(4) For diesel engine–drive foam concentrate pumps, a listed fire pump controller shall be used.

9.14.9.4 Piping shall be arranged so that maximum foam concentrate demand can be supplied from either primary or reserve foam concentrate tanks.

9.14.10.1 General. Actuation systems shall be provided with complete circuit supervision and shall be arranged in accordance with 9.14.15.

9.14.10.2.1* An automatic detection system shall be provided for actuation of these systems. Detection systems shall be installed in accordance with NFPA 72.

9.14.10.2.2 Manual actuation stations shall be provided for each low-expansion protection system and shall be located both inside and outside the aircraft maintenance and servicing area. Stations shall be located as close as possible to the aircraft positions to facilitate early system actuation in the event of a fire.

9.14.11.1 Hand hose systems shall be installed in every hangar, to provide for manual fire control.

9.14.11.2 The hand hose systems shall be arranged to permit application of water or other extinguishing agents on each side and into the interior of the aircraft located in the aircraft storage and servicing area. At least two hose lines shall be designed to be operated simultaneously.

9.14.11.3.1 Foam-water hand hose systems shall be installed in the aircraft storage and servicing areas having a hangar fire area greater than 1115 m² (12,000 ft²) housing other than unfueled aircraft.

9.14.11.3.2 The systems shall conform with the applicable portions of NFPA 14 and of NFPA 11.

9.14.11.3.3 These foam-water hand hose systems shall be supplied from a connection to the low-expansion or high-expansion foam system header or from a direct connection to the water source.

9.14.11.3.4 Each foam-water hand hose connection shall be a minimum of 38 mm (1½ in.) in size and fitted with a control valve. The hose shall be of a diameter to provide a minimum flow of 227 L/min (60 gpm).

9.14.11.3.5 The hose shall be racked or reeled. Hoses shall be fitted with an approved foam-maker nozzle or a combination-type nozzle designed to permit foam application or water spray. Nozzles shall be of the shutoff type or shall have a shut-off valve at the nozzle inlet.

9.14.11.3.6 Foam–liquid concentrate shall be permitted to be supplied from either a central distribution system, separate from or a part of a foam-water system, or from stationary foam–liquid concentrate containers fitted with listed proportioning devices.

9.14.11.3.7 The minimum supply of foam–liquid concentrate shall be calculated to provide operation of at least two hand hose lines for a period of 20 minutes at a foam solution discharge rate of 227 L/min (60 gpm) each.

9.14.11.4.1 Water hand hose and standpipe systems shall be installed in accordance with NFPA 14 in aircraft storage and servicing areas having a hangar fire area greater than 1115 m² (12,000 ft²) and housing unfueled aircraft and all shop, office, and non-aircraft storage areas in hangars, except where special hazards that require special protection exist.

9.14.11.4.2 Water hand hoses shall be fitted with listed adjustable stream pattern nozzles designed to permit straight stream or water spray application.

requirements for hose stream and other equipment as determined in 9.14.11. Water shall be available in the quantity and pressure required to supply the maximum number of discharge devices designed to operate simultaneously.

9.14.12.2 The total water supply duration shall be for a minimum of 45 minutes.

9.14.12.3 Hand Hose Systems. The water supply for hand hose systems shall be capable of satisfying the requirements of 9.14.11. The demand shall be calculated at the point where supply piping for the hand hose systems connects to the system piping or fire protection underground.

9.14.12.4 Exterior Hose Streams. Where the water supply for the systems also serves as a supply for exterior hose streams, a hose stream allowance of 1893 L/min (500 gpm) shall be included in the water supply hydraulic calculations. Calculations for hose stream shall be in accordance with NFPA 15.

9.14.12.5 Water Reservoirs. Where a single reservoir is used for the basic water supply, such reservoir shall be divided into approximately equal sections, arranged so that at least one-half of the water supply will always be maintained in service in order to increase the reliability of the water supply. The suction line from each section shall be sized to deliver the maximum water supply requirement.

9.14.13.2 The total pumping capacity shall be such that maximum demand shall be met with the largest fire pump out of service.

9.14.13.3 Fire pump houses and fire pump rooms shall be of fire-resistant or noncombustible construction. Where internal combustion engines used for driving fire pumps are located inside the fire pump house or fire pump room, protection shall be provided by automatic sprinklers installed in accordance with NFPA 13.

9.14.13.4 Fire pumps shall be started automatically by either a drop in water pressure or a signal from the detection control panel. Where two or more pumps are used, they shall be provided with automatic sequential starting.

9.14.13.5 Where pressure loss is used as the starting sequence for fire pumps, a small auxiliary pressure maintenance pump or other suitable means to maintain normal system pressures shall be provided.

9.14.13.6 Once started, fire pumps shall be arranged to run continuously until they are stopped manually. There shall be an audible “pump running” alarm in a continuously attended area.

9.14.13.8.2 Hydrostatic pressure tests shall be conducted on each system as specified in NFPA 11, NFPA 13, or NFPA 14, as applicable.

9.14.13.8.3 All devices and equipment installed as part of the system shall be tested.

9.14.13.8.4 The maximum number of systems expected to operate shall be simultaneously discharged with foam. This test shall be run for a length of time to stabilize discharge before test samples are taken to determine foam concentrate percentage.

9.14.13.8.5 Any proportioner not tested under the requirements of 9.14.13.8.4 shall be individually tested with foam concentrate to determine concentrate percentage.

9.14.13.8.6 Low-expansion and high-expansion foam protection systems shall be subjected to foam flow tests, with foam flowing simultaneously from the maximum number of foam nozzles or generators expected to operate, in order to ensure that the hazard is protected in conformance with the design specification and to determine whether the flow pressures, agent discharge capacity, foam coverage, and percent concentration, are satisfactory.

9.14.13.8.7 Low-expansion and high-expansion foam protection systems shall be examined visually to determine that they have been installed correctly. Checks shall be made for such items in conformity with installation plans, continuity of piping, tightness of fittings, removal of temporary blank flanges, and accessibility of valves and controls. Devices shall be identified, and operating instructions shall be prominently posted.

9.14.13.8.8* The timing of foam system discharge shall be measured beginning at the time of system actuation.

9.14.13.9 Final Approval. The installing company shall furnish a written statement that the work has been completed in accordance with 9.14.6 and tested in accordance with the provisions of 9.14.13.8.

9.14.14.2 In aircraft storage and servicing areas, the distribution of such devices shall be in accordance with the extra hazard classification outlined in NFPA 10.

9.14.14.3 The distribution of extinguishers in other areas of aircraft hangars shall be in accordance with light, ordinary, or extra hazard occupancy based on an analysis of each room or area following the requirements of NFPA 10.

9.14.15* Protection System Alarms. In addition to local alarm service, alarms shall be transmitted to a constantly attended location.

Chapter 10 Paint Hangars

10.1 Construction.

10.1.1 Paint hangars shall be constructed in accordance with Chapter 5 of this standard.

10.1.2 All flammable or combustible liquid storage, mixing, and application apparatus cleaning operations shall be separated from the paint hangar by a minimum 2-hour rated fire separation, with the openings protected by 1½-hour rated fire doors.
10.2 Fire Protection.

10.2.1 The protection of aircraft paint hangars shall be in accordance with either Chapter 6 or Chapter 7 of this standard, whichever is applicable.

10.2.2 The protection of an aircraft paint hangar housing unfueled aircraft shall be in accordance with the provisions of NFPA 13 for an extra hazard Group 2 occupancy.

10.3 Ventilation.

10.3.1 The ventilation system in a paint hangar shall be in accordance with the ventilation provisions of NFPA 33 and 10.3.2 through 10.3.4 of this standard.

10.3.2 Ventilation shall be provided to prevent the accumulation of flammable vapors to not more than 25 percent of the LFL in the exhaust stream exiting the paint area.

10.3.3 Recirculation of a portion of the exhaust stream back into the hangar shall be permitted, provided the recirculation provisions of NFPA 33 for booths and rooms and the requirements of 10.3.3.1 and 10.3.3.2 are met.

10.3.3.1* Supply air flow shall be unidirectional and shall provide a uniform airflow across the cross-sectional area of the filters.

10.3.3.2* If the concentration of vapors in the exhaust air stream exceeds 25 percent of the LFL, the recirculation equipment shall be arranged to automatically shut down until the hazardous condition is corrected.

10.3.4 Paint or other flammable or combustible liquid application equipment shall be interlocked with the ventilation system such that the loss of supply, makeup air, or exhaust fans that reduce the supply airflow to below 75 percent of design airflow will interrupt the operation of this application equipment.

10.4 Electrical Equipment.

10.4.1 Electrical equipment in a paint hangar shall be in accordance with Article 513 and Article 516 of NFPA 70 and 10.4.2 through 10.4.5 of this standard.

10.4.2 The area around the aircraft perimeter, extending 3 m (10 ft) horizontally and 3 m (10 ft) vertically, shall be classified as a Class I, Division 1 location. All electrical wiring and equipment in this area shall comply with the applicable provisions of Article 501 of NFPA 70.

10.4.3 The area around the aircraft perimeter, extending from 3 m to 9.1 m (10 ft to 30 ft) horizontally and 3 m to 6.1 m (10 ft to 20 ft) vertically, shall be classified as a Class I, Division 2 location. All electrical wiring and equipment in this area shall comply with the applicable provisions of Article 501 of NFPA 70.

10.4.4 All lighting fixtures within a paint hangar shall be totally enclosed or constructed so as to prevent the escape of sparks or hot particles.

10.4.5* In addition to the grounding requirements in Chapter 5, grounding facilities shall be provided for the paint or other flammable or combustible liquid application system and the application system operator.

10.5 Operations. Flammable or combustible liquid operations inside a paint hangar shall be in accordance with the provisions of NFPA 30 and NFPA 410.

Chapter 11 Periodic Inspection and Testing

11.1 Fire Protection Systems.

11.1.1 Inspection and testing of fire protection systems in aircraft hangars shall be performed in accordance with NFPA 25 as modified by Table 11.1.1.

11.1.2 All preprimed closed-head AFFF systems shall be drained, flushed, and reprimed annually.

11.1.3 Records of inspections, tests, and test results shall be maintained.

Chapter 12 Unfueled Aircraft Hangars

12.1 General. This chapter shall apply to those hangars housing aircraft that have never been fueled or have had the fuel removed to comply with the definition for unfueled aircraft in Chapter 3.

12.2 Construction. Unfueled aircraft hangars shall be constructed in accordance with Chapter 5 of this standard, and as modified herein.

12.2.1 Internal Separations.

12.2.1.1 Shops, offices, and parts storage areas shall be permitted to be located in the aircraft storage and servicing area without a fire-rated separation.

12.2.1.2 Attached, adjoining, or contiguous structures, such as a lean-to, shop, office, or parts storage area shall be permitted without a fire-rated separation.

12.2.2 Columns. Unprotected columns in aircraft storage and servicing areas shall be permitted.

12.2.3 Floors. Hangar floors in aircraft storage and servicing areas without trench drainage systems shall be permitted.

12.2.4 Heating and Ventilating.

12.2.4.1 Heating, ventilating, and air-conditioning equipment shall be permitted to employ the use of open flames or glowing elements.

12.2.4.2 Heating plants that are fired with gas, liquid, or solid fuels shall not be required to be separated from the aircraft storage and servicing area by fire resistance-rated partitions.

12.2.4.3 Heating, ventilating, and air-conditioning systems employing recirculation of air within aircraft storage and servicing areas shall be allowed to have supply and return air openings at or near floor level.

12.3 Lighting and Electrical Systems.

12.3.1 Lighting and electrical systems shall comply with the provisions of NFPA 70.
12.3.2 Main electrical distribution panels, metering equipment, and similar electrical equipment shall not be required to be separated from aircraft storage and servicing areas by fire-rated partitions.

12.4 Grounding Facilities for Static Electricity. Aircraft storage and servicing areas shall be provided with grounding facilities in accordance with this standard.

12.5 Protection of Unfueled Aircraft Hangars.

12.5.1 This section shall apply to all Group I and Group II hangars, and Group IV hangars with fire areas greater than 1115 m² (12,000 ft²).

12.5.2* Sprinkler systems shall be either wet pipe or single-interlock preaction, designed and installed in accordance with the applicable sections of NFPA 13 and the provisions of this chapter.

Table 11.1.1 Inspection and Testing of Hangar Fire Protection Systems

<table>
<thead>
<tr>
<th>System Components</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Semi-annually</th>
<th>Annually</th>
<th>Quarterly</th>
<th>Every 5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler heads</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Piping</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Pipe hangers</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sprinkler alarm valve</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>O¹</td>
<td>—</td>
</tr>
<tr>
<td>Deluge valve</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>O</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Shut-off valves</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fire pumps</td>
<td>F²</td>
<td>—</td>
<td>—</td>
<td>D</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Water reservoirs</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Hose stations</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>—</td>
<td>D</td>
<td>—</td>
</tr>
<tr>
<td>Strainers</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Foam proportioning device</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Water-powered monitor nozzle</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>D</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Electric-powered manual nozzle</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Water-powered high-expansion-foam (HEF) generator</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>O</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Electric-powered high-expansion-foam (HEF) generator</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Pneumatic detector</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>O³</td>
<td>—</td>
</tr>
<tr>
<td>Electric detector</td>
<td>V</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>O³</td>
<td>—</td>
</tr>
<tr>
<td>Optical detector</td>
<td>V</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>O³</td>
<td>—</td>
</tr>
<tr>
<td>Control panels</td>
<td>—</td>
<td>V</td>
<td>F</td>
<td>O</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Alarm transmission (local and remote)</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tamper switch</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>—</td>
</tr>
<tr>
<td>Flow indication switch</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>O</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Supervisory alarms</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Manual actuation stations</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hangar floor drain system and separators</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>Fire doors</td>
<td>—</td>
<td>V</td>
<td>—</td>
<td>F</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gas detectors</td>
<td>—</td>
<td>V</td>
<td>F</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ventilation system in pits, tunnels, and ducts</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
</tr>
<tr>
<td>Grounding equipment</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>F</td>
</tr>
</tbody>
</table>

¹For the purposes of this test, the inspector’s flow valve is acceptable.
²Churn test.
³At this time it is necessary to check that the set points are the same as the original.
12.5.3 Sprinkler piping shall be hydraulically sized in accordance with NFPA 13. The maximum area covered by a single sprinkler system shall not exceed 3716 m² (40,000 ft²).

12.5.4 Sprinklers shall be spaced in accordance with NFPA 13 or in accordance with their listings.

12.5.5 Where open hangar doors result in an obstruction to the distribution of water from the hangar sprinkler systems, additional sprinklers shall be provided beneath the doors to ensure required floor coverage.

12.5.6 The design density from sprinkler systems shall be a minimum of 6.9 L/min/m² (0.17 gpm/ft²) over any 464.5 m² (5000 ft²) area, including the hydraulically most demanding area as defined in NFPA 13.

12.5.6.1 An outside hose stream demand of 1893 L/min (500 gpm) shall be included in all hydraulic calculations.

12.5.7 Sprinklers shall be control mode and have a minimum nominal K-factor of K-80 (K-5.6). Suppression mode sprinklers shall be allowed when the hangar occupancy is covered by other applicable NFPA standards (e.g., the storage protection provisions in NFPA 13). Sprinklers shall be listed for their application, and designed and installed in accordance with NFPA 13 or their listings.

12.5.8 Sprinklers having a temperature rating of 79.4°C (175°F) shall be used. Sprinklers having a temperature rating of 93.3°C (200°F) shall be permitted in areas subject to high ambient temperatures.

12.5.9 Sprinkler systems shall be flushed and tested in accordance with NFPA 13.

12.5.10 Water hand hose systems shall not be required in aircraft storage and servicing areas, shops, offices or non-aircraft storage areas, except where required by other NFPA Standards.

12.5.11 The total water supply shall be available in sufficient quantity and pressure to satisfy the demand created by the combination of the sprinkler system and the requirements for hose streams. This supply shall be available for a minimum duration of 60 minutes.

12.6 Spray Application of Flammable and Combustible Liquids.

12.6.1 Paint spray application booths, installed and protected in accordance with NFPA 33, shall be allowed in the hangar storage and servicing area.

12.6.2 Protection for aircraft hangars used for the spray application of flammable and combustible liquids shall be in accordance with this standard and NFPA 410.

12.6.3 All flammable or combustible liquid storage, mixing, and application apparatus cleaning operations shall be separated from the hangar storage and servicing area by a minimum 2-hour rated fire separation, with the openings protected by 1½-hour rated fire doors.

12.7 Portable Extinguishers.

12.7.1 Portable extinguishers shall be provided in accordance with NFPA 10.

12.7.2 In aircraft storage and servicing areas, the distribution of such devices shall be in accordance with the ordinary hazard classification outlined in NFPA 10.

12.7.3 The distribution of extinguishers in other areas of aircraft hangars shall be in accordance with light, ordinary, or extra hazard occupancy based on an analysis of each such room or area following the requirements of NFPA 10.

12.8 Protection System Alarms. In addition to local alarm service, water flow and fire detection alarms shall be transmitted to a constantly attended location, in accordance with NFPA 72.

Annex A Explanatory Material

Annex A is not a part of the requirements of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.1.2 The adequacy and usefulness of aircraft hangars depends to a large extent on the fire resistance of their construction and the fire protection provided within the buildings.

A.3.2.1 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A.3.2.2 Authority Having Jurisdiction (AHJ). The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.3.2.3 Listed. The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A.3.3.2 Aircraft Hangar. For overall height of various transport-type aircraft, see Table A.3.3.2.
Table A.3.3.2 Gross Wing Area and Overall Height for Selected Aircraft

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Gross Wing Area</th>
<th>Overall Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m^2)</td>
<td>(\text{ft}^2)</td>
</tr>
<tr>
<td>Airbus A-380*</td>
<td>830.0</td>
<td>8920</td>
</tr>
<tr>
<td>Antonov An-124*</td>
<td>628.0†</td>
<td>6760</td>
</tr>
<tr>
<td>Lockheed L-500-Galaxy*</td>
<td>576.0†</td>
<td>6200</td>
</tr>
<tr>
<td>Boeing 747*</td>
<td>541.1†</td>
<td>5825</td>
</tr>
<tr>
<td>Airbus A-340-500,-600*</td>
<td>437.0†</td>
<td>4703</td>
</tr>
<tr>
<td>Boeing 777*</td>
<td>472.8†</td>
<td>4605</td>
</tr>
<tr>
<td>Ilyushin II-96*</td>
<td>391.6†</td>
<td>4215</td>
</tr>
<tr>
<td>DC-10-20, 30*</td>
<td>367.7†</td>
<td>3958</td>
</tr>
<tr>
<td>Airbus A-340-200,-300,A-330-200,-300*</td>
<td>361.6†</td>
<td>3892</td>
</tr>
<tr>
<td>DC-10-10*</td>
<td>358.7†</td>
<td>3861</td>
</tr>
<tr>
<td>Concorde*</td>
<td>358.2†</td>
<td>3856</td>
</tr>
<tr>
<td>Boeing MD-11*</td>
<td>339.9†</td>
<td>3648</td>
</tr>
<tr>
<td>Boeing MD-17*</td>
<td>353.0†</td>
<td>3800</td>
</tr>
<tr>
<td>L-1011*</td>
<td>321.1†</td>
<td>3456</td>
</tr>
<tr>
<td>Ilyushin II-76*</td>
<td>300.0†</td>
<td>3229</td>
</tr>
<tr>
<td>Boeing 767*</td>
<td>283.4†</td>
<td>3050</td>
</tr>
<tr>
<td>Ilyushin IL-62*</td>
<td>281.5†</td>
<td>3030</td>
</tr>
<tr>
<td>DC-10 MD-10</td>
<td>272.4</td>
<td>2927</td>
</tr>
<tr>
<td>DC-8-63, -73</td>
<td>271.9</td>
<td>2927</td>
</tr>
<tr>
<td>DC-8-62, -72</td>
<td>271.8</td>
<td>2926</td>
</tr>
<tr>
<td>DC-8-61, 71</td>
<td>267.8</td>
<td>2883</td>
</tr>
<tr>
<td>Airbus A-300</td>
<td>260.0†</td>
<td>2799</td>
</tr>
<tr>
<td>Airbus A-310</td>
<td>218.9†</td>
<td>2357</td>
</tr>
<tr>
<td>Tupolev TU-154</td>
<td>201.5†</td>
<td>2169</td>
</tr>
<tr>
<td>Boeing 737</td>
<td>185.2†</td>
<td>1994</td>
</tr>
<tr>
<td>Tupolev TU-204</td>
<td>182.4†</td>
<td>1963</td>
</tr>
<tr>
<td>Boeing 727-200</td>
<td>157.9†</td>
<td>1700</td>
</tr>
<tr>
<td>Lockheed L-100J Hercules</td>
<td>162.1†</td>
<td>1745</td>
</tr>
<tr>
<td>Yakovlev Yak-42</td>
<td>150.0†</td>
<td>1614</td>
</tr>
<tr>
<td>Boeing 737-600,-700,-800,-900</td>
<td>125.0†</td>
<td>1345</td>
</tr>
<tr>
<td>Airbus A-318, A-319, A-320, A-321</td>
<td>122.6†</td>
<td>1319</td>
</tr>
<tr>
<td>Boeing MD 80</td>
<td>112.3†</td>
<td>1209</td>
</tr>
<tr>
<td>MD 90</td>
<td>9.3†</td>
<td>30–7</td>
</tr>
<tr>
<td>Gulfstream V</td>
<td>105.6†</td>
<td>1137</td>
</tr>
<tr>
<td>Boeing 737-500,-400,-500</td>
<td>105.4†</td>
<td>1135</td>
</tr>
<tr>
<td>Tupolev TU-334, TU-354</td>
<td>100.0†</td>
<td>1076</td>
</tr>
<tr>
<td>BAC 1-11-500</td>
<td>95.8†</td>
<td>1031</td>
</tr>
<tr>
<td>NAMC YS-11</td>
<td>94.8†</td>
<td>1020</td>
</tr>
<tr>
<td>Fokker 100, 70</td>
<td>93.5†</td>
<td>1006</td>
</tr>
<tr>
<td>BAC 1-11-300,-400</td>
<td>93.2†</td>
<td>1003</td>
</tr>
<tr>
<td>Boeing 717</td>
<td>93.0†</td>
<td>1001</td>
</tr>
<tr>
<td>DC-9-30</td>
<td>93.0†</td>
<td>1001</td>
</tr>
<tr>
<td>Boeing 737-200</td>
<td>91.0†</td>
<td>980</td>
</tr>
<tr>
<td>Gulfstream IV</td>
<td>88.3†</td>
<td>950</td>
</tr>
<tr>
<td>DC-9-10</td>
<td>88.6†</td>
<td>934</td>
</tr>
<tr>
<td>BAc 146, RJX-70,-85,-100</td>
<td>77.3†</td>
<td>832</td>
</tr>
<tr>
<td>Fokker 50, 60</td>
<td>70.0†</td>
<td>753</td>
</tr>
<tr>
<td>Canadair RJ-700</td>
<td>68.6†</td>
<td>738</td>
</tr>
<tr>
<td>Dash 8 Q400</td>
<td>63.0†</td>
<td>679</td>
</tr>
<tr>
<td>ATR 72</td>
<td>61.0†</td>
<td>656</td>
</tr>
</tbody>
</table>

(continues)
Table A.3.3.2 Continued

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Gross Wing Area</th>
<th>Overall Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
<td>ft²</td>
</tr>
<tr>
<td>Airtech CN-235</td>
<td>59.1†</td>
<td>636</td>
</tr>
<tr>
<td>Saab 2000</td>
<td>55.7†</td>
<td>600</td>
</tr>
<tr>
<td>Canadair RJ-100, -200</td>
<td>54.5†</td>
<td>587</td>
</tr>
<tr>
<td>ATR 42</td>
<td>42.5†</td>
<td>586</td>
</tr>
<tr>
<td>Dash 8 Q100, Q200</td>
<td>54.3†</td>
<td>585</td>
</tr>
<tr>
<td>Embraer ERJ-135, -145</td>
<td>51.1†</td>
<td>550</td>
</tr>
<tr>
<td>Cessna 750</td>
<td>48.9†</td>
<td>527</td>
</tr>
<tr>
<td>Cessna 680</td>
<td>47.9†</td>
<td>516</td>
</tr>
<tr>
<td>Saab 340</td>
<td>41.8†</td>
<td>450</td>
</tr>
<tr>
<td>Embraer EMB-120</td>
<td>39.4†</td>
<td>424</td>
</tr>
<tr>
<td>Bell Boeing V-22</td>
<td>39.5†</td>
<td>382</td>
</tr>
<tr>
<td>Britten-Norman BN2</td>
<td>30.2†</td>
<td>325</td>
</tr>
<tr>
<td>Cessna 650</td>
<td>28.9†</td>
<td>312</td>
</tr>
<tr>
<td>Beech 1900</td>
<td>28.8†</td>
<td>310</td>
</tr>
<tr>
<td>Beech King Air C90</td>
<td>27.3†</td>
<td>294</td>
</tr>
</tbody>
</table>

* Aircraft with wing area in excess of 279 m² (3000 ft²).
† Data from Jane’s All the World’s Aircraft.

A.3.3.3 Aircraft Storage and Servicing Area

Wherever the term “storage and servicing” is used in this document, it is intended to imply that it is the area where aircraft are stored, serviced, or both.

A.3.3.12 Paint Hangar

As prescribed in NFPA 410, painting operations in maintenance and storage hangars are limited to 80 ft² in a 2-hour period. For purposes of this standard, this applies to the application of any flammable or combustible liquids.

A.4.1.3 Group III Aircraft Hangar

Group III aircraft hangars include any of the following:

1. A freestanding unit for a single aircraft
2. A row hangar with a common structural wall and roof system
3. A hangar that houses multiple aircraft as well as having door openings for each aircraft
4. An open-bay hangar capable of housing multiple aircraft

Figure A.4.1.3(a) through Figure A.4.1.3(c) are examples of Group III aircraft hangars.

A.5.1.1 Building construction types are defined in NFPA 220. See Annex B for more information.

A.5.1.2 Preference should be given to the use of noncombustible materials in Type V(111) and (000) hangars. Separate shops, offices, and storage areas should comply with the provisions of 5.2.1.

A.5.2.1 Fire wall construction should be in accordance with a listed construction assembly or the local building code. The construction should be resistant to or protected from mechanical damage and potential damage from discharge of the fixed fire protection system.

Possible reasons to subdivide aircraft storage and service areas into separate fire areas include the following:

1. Reducing required water supplies
2. Reducing exposed values for insurance or other purposes
3. Reducing exposure between occupants
4. Modifying the hangar classification

![FIGURE A.4.1.3(a) Freestanding Units for Single Aircraft.](image1)

![FIGURE A.4.1.3(b) Typical Configurations of Row Hangars.](image2)
A.5.2.3 Shops, office, and storage areas should be in separate, detached buildings. Workshops, offices, and storage areas having their own roof coverings and built within aircraft storage or servicing areas should have watertight roof deck coverings.

A.5.3.2.3 See also NFPA 80.

A.5.4.2 These special hazards include, but are not limited to, spray painting or doping areas, flammable liquid storage or mixing rooms, and so forth.

A.5.5.1 Such classifications of roof coverings are determined when tested in accordance with the 2003 edition of NFPA 256.

A.5.5.3 Construction types will dictate the need for sprinkler protection in these spaces.

A.5.6.3 Additional guidance pertaining to fixed water spray systems can be found in NFPA 15. This information can also be used in the design of foam-water systems and when extension of discharge devices from the overhead sprinkler system is used. The design of such protection should take into account factors such as the shape of the column, wetting of lower sprinklers, obstructions, and type of discharge device.

A.5.6.3.4 The locations of discharge devices should preferably be on alternate sides of the columns. The wetted surface of a structural member is defined as one side of the web and the inside surface of one side of the flanges.

A.5.7.3 Preplanning should ensure availability of necessary auxiliary equipment such as tractors, cables, grapnels, and so forth, where manual operation is either impossible or too slow to allow prompt aircraft removal.

A.5.7.4 The coldest weather temperature that is used to determine the need for heating should be based on the lowest mean temperature for one day, as shown in Figure A.5.7.4.

A.5.9.1 Landing gear pits, ducts, and tunnels located beneath the hangar floor should be avoided if possible because of the danger of accumulation of flammable liquids or vapors; where their use is essential, the protection measures specified in Section 5.9 should be followed. For floor drainage, see 5.11.2.

A.5.9.5 Sensors should be installed in accordance with the manufacturer’s instructions, and close attention paid to the recommended sensor spacing.

A.5.9.7 The venting arrangements will depend on the design of the pits, elevating platforms, and means of access. It might be necessary for part of the platform surface to be grated or perforated to provide adequate explosion venting area. The general principles in NFPA 68 should be followed.

A.5.9.8 Consideration should be given to the selection of an extinguishing agent that could also be used as a means of inerting the pit in the event that flammable vapors are present concurrent with the loss of use of the ventilation system due to power failure, maintenance, or other causes.

A.5.11.2.2 Aircraft hangars also might require floor trench drainage systems to effectively dispose of water used for cleaning aircraft and hangar floor surfaces and water accumulation from possible flooding due to high groundwater tables, and to drain away water discharged from the fire protection equipment provided within the structure. Reference can be made to NFPA 415 for information on drainage systems and to Annex A of NFPA 15 for information on drainage equipment and arrangements.

A.5.11.2.4 In general, this means that the design has to be adequate to ensure that the liquid level at the center of the drain is below the top surface of the drain inlet grating for grated round, rectangular, and long trench-type inlets or below the surface in the case of a slit trench.

A.5.12.1 It is recommended that hangar heating, ventilating, and air-conditioning equipment fired with gas, liquid, or solid fuel be located in a fire-resistive or noncombustible detached building wherever possible.

A.5.12.4 Personnel should be fully instructed that in the event of a serious gasoline or similar flammable liquid spill on the hangar floor, the fans should be shut off.

A.5.13.2 See also 5.7.2 for power supply to doors accommodating aircraft.

A.5.14 All aircraft hangars should be surveyed to determine the need for approved lightning protection. Where installed, such systems should be listed. See NFPA 780.

A.5.15.1 As low a resistance as possible should be secured and maintained. Ten thousand ohms is a practical recommended maximum where determined by standard procedures. For further details on this subject, see NFPA 407 and NFPA 77.

A.5.15.3 Speedometer, preformed steel, or equivalent cable will minimize danger of employee hand injury.

A.5.17 Depth of Draft Curtains. Draft curtains should extend down from the roof or ceiling of aircraft storage and servicing areas not less than one-eighth of the height from the floor to the roof or ceiling. Under curved or sloping roofs extending to grade level or close to grade level, draft curtains need not be continued below 4.8 m (16 ft) from the floor.

Installation of Draft Curtains. Draft curtains should be installed, preferably at right angles to the hangar doors, forming roof pockets that are rectangular in shape. Hangars that are long and narrow, however, might best be subdivided by a “grid” system of draft curtains that are both at right angles and parallel to the doors. In arch-type hangars, draft curtains can be hung on exposed interior roof supports running parallel to the doors. The method of installation should be based on obtaining maximum operational efficiency from the sprinkler protection, taking into consideration mean wind conditions, floor drains, floor pitch, and details of occupancy usage.

Roof Sections as Draft Curtains. Structural features of a building that serve the purpose of draft curtains (roof monitors,
A.6.2.2.7 This provision is for the purpose of addressing obstructions that can be caused by hangar door positions. It is not intended to address interference due to wind.

A.6.2.3.1 Supplementary protection systems for hangars containing several aircraft, each having a wing area less than 279 m² (3000 ft²), can be warranted. Such systems are recommended under the following conditions:

1. Rapid control of a fuel fire exposing a single aircraft is considered essential.
2. Strategically important military aircraft or multiple high valued aircraft are accommodated.
3. Arrangement of aircraft within a hangar results in congestion and limited access to individual aircraft.

A.6.2.3.2 In general, the specified floor area would be the area under the wings and wing center sections of the aircraft. Configuration of aircraft and positioning of aircraft and ground equipment within an aircraft storage and servicing area can compromise the effectiveness of any supplementary protection systems. Original design and testing of such systems should anticipate obstructions on the floor (such as those created by working platforms) in providing protection over the specified floor areas. The discharge from overhead
A preaction standard sprinkler system should be used, if there is a possibility of freezing in an unheated hangar. See A.6.2.7.2.

Experience has shown that different brands of foam composition, the proportioning concentration, and the application technique. Different brands or types of agents should not be compatible and can have varying levels of fire-fighting effectiveness. Care should be utilized in the selection of foam concentrates. For further information, see NFPA 16.

A.6.2.6.1 Actual flow rates are often higher than calculated, which will often result in a reduction in foam supply duration.

A.6.2.6.2 Actual flow rates are often higher than calculated, which will often result in a reduction in foam supply duration.

A.6.2.7.2 Reliability of power supplies for drivers of water pumps, foam concentrate pumps, and foam generators will be a function of all the facilities between the pump driver and the power source. For a diesel engine–driven pump and an electric motor–driven pump, the independence of the power sources is clear. This, of course, assumes there is a battery-powered starter for the diesel engine. Independence of two diesel engines with separate fuel tanks is also fairly easily seen.

However, the degree of independence of the power sources for two electric-motor drivers is much more difficult to establish. A single controller, a single switchgear cabinet, or a single cable route might easily negate the desired reliability.

The considerations of power supply reliability are required in various sections of NFPA 20 and NFPA 16. These considerations should demonstrate that the power supply reliability is consistent with that achieved for the mechanical components. A number of methods are available. Such a method could be a simple inspection and statement of design philosophy or a sophisticated fault tree analysis.
not be mixed without the advice of the equipment manufacturer regarding their interchangeability and compatibility.

A.6.2.10.2.1 Actual flow rates are often higher than calculated. This will often result in a reduction in foam supply duration.

Aircraft storage and servicing areas with large doors on both ends can present special draft problems that affect the efficient operation of the sprinkler systems. In such cases, additional systems should be included in the calculation of water supply needed. Draft stops should effectively surround each individual sprinkler system. (See Section 5.17.)

A.6.2.10.7 The development of satisfactory water supplies is a matter requiring engineering judgment and careful analysis of local conditions. (See NFPA 20 and NFPA 22.) Acceptable types of water supplies can consist of one or more of the following:

1. Connections to reliable waterworks systems, including automatic booster pumps where required
2. Automatic fire pumps taking suction under a head from storage reservoirs or other suitable supply
3. Gravity tanks

Combinations of these supplies can be used to advantage. It is desirable to have two independent water supplies. Where reliance is placed on automatic fire pumps, special consideration should be given to the use of multiple pumps rather than single pumps and the use of multiple sources of power in order to increase the reliability of pump drivers. Water supplies should be guarded against entry of foreign material that would clog sprinklers or piping. Waterworks connections, where used as an independent supply, should be capable of delivering water at the specified rate and pressure as determined by flow tests, with due consideration given to any conditions that could affect the design supply and pressure. Investigation should be made to determine the normal and emergency operation of the waterworks system, including domestic consumption and operation of the waterworks pumps at time of test, pressure-reducing valves, or other factors affecting adequacy of a public water supply. Automatic booster fire pumps should be used to provide effective pressure from waterworks connections.

A.6.2.10.8.4 Supplemental means for automatically starting the fire pumps should also be provided.

A.6.2.10.9 In connection with the flushing operation, preplanning should be made for means of disposing of the large quantities of water discharged.

A.6.2.11.9 System actuation is defined as actuation of the water control valve.

A.6.4 For further information, see NFPA 72.

A.7.2.1 A preaction standard sprinkler system should be used only if there is a possibility of freezing in an unheated hangar.

A.7.3 Experience has shown that different brands of foam may not be compatible and can have varying levels of firefighting effectiveness. Care should be utilized in the selection of foam concentrates. For further information, see NFPA 16.

A.7.3.6.3 System actuation is defined as actuation of the automatic water control valve.

A.7.4 Experience has shown that different brands of foam may not be compatible and can have varying levels of firefighting effectiveness. Care should be utilized in the selection of foam concentrates. For further information, see NFPA 16.

A.7.4.3 This design criterion can be achieved by means of multiple nozzles of the same or different capacities aimed to discharge toward the aircraft parking area. The fluidity of the foam will achieve coverage of the entire floor area.

A.7.4.5 Actual flow rates are often higher than calculated, which will often result in a reduction in foam supply duration.

A.7.6.7 This should be accomplished by providing manifolded drains.

A.7.8 See A.6.2.10.1.

A.8.1.1 Group III hangars for small aircraft either are prefabricated assemblies or are locally constructed of unprotected steel or aluminum, light wood framing, or cement or cinder blocks. The majority of the prefabricated types are unprotected steel structures with sheet steel or aluminum roof coverings and sidings. Other prefabricated hangars have wood or cement sidings and wood or plywood doors. Except in unusual circumstances, construction types other than Type II (000) and Type V (000) are unlikely because of cost factors. Earth floors are common. Floor drainage is not required for single-unit or row hangars, although utility drains are useful and should be provided. The airport operator should have a master key for the Group III hangars on the airport premises so as to provide emergency access in case of fire. (See A.5.1.1.)

A.8.1.6 Such classifications of roof coverings are determined when tested in accordance with the 2003 edition of NFPA 256.

A.8.4.4 Personnel should be fully instructed that in the event of a serious gasoline or similar flammable liquid spill on the hangar floor, the fans should be shut off.

A.8.5.2 See also 5.7.2 for power supply to doors accommodating aircraft.

A.8.7.1 As low a resistance as possible should be secured and maintained. A practical recommended maximum is 10,000 ohms (Ω) where determined by standard procedures. For further details on this subject, see NFPA 407 and NFPA 77.

A.8.7.3 Speedometer, preformed steel, or equivalent cable should minimize the danger of employee hand injury.

A.8.9.1.1 Not all adopted building codes require fire protection systems in Group III aircraft hangars. Various building codes have different requirements such as maximum area, height limitations, construction type limitations, setback distances from property lines and other buildings, and fire protection features.

A.8.9.1.2 Fire loss history has shown that in aircraft hangars, regardless of size, if the fire event involves aircraft fuels, there is a significantly increased potential for loss of the hangar and contents if an automatic fire suppression system is not provided.

A.9.1 Membrane-covered rigid-steel-frame structures (Group IV hangars) are an evolving construction technology that is recognized by the model building codes and is being used for a variety of occupancies, including warehouses and hangars. The use of membrane-covered rigid-steel-frame structures for providing weather protection covering for aircraft has become a viable alternative to the traditional construction techniques that have been used for aircraft hangars. The fire protection scheme considered for these structures anticipates that, in the event of a fire, the structure will be self-ventiling.
A.9.5.4 See Figure A.5.7.4.

A.9.12.3 Speedometer, preformed steel, or equivalent cable should minimize the danger of employee hand injury.

A.9.14.7.4.2 There is little concern for a large volume of water being associated with a high-expansion foam solution. In an aggregation of mechanically expanded foam, the ratio of air or other gases to foam-water solution ranges from 200:1 to approximately 1000:1.

A.9.14.10.2.1 Additional guidance pertaining to detection systems can be found in NFPA 72. The selection of fire detectors should take into account factors such as the following:

1. The anticipated fuel
2. The ability of the detectors to sense fire in the fire zone
3. The speed at which the detector will sense the fire
4. Potential sources of stimuli that could be falsely detected as a fire

Detection systems for low-level systems should be either a radiation (infrared or ultraviolet) or a heat-responsive (continuous strip-type or thermistor-type) system. Spacing of detection devices should be no greater than the maximum recommended by the manufacturer.

A.9.14.13.8.8 System actuation is defined as actuation of the automatic water control valve.

A.9.14.15 For further information, see NFPA 72.

A.10.3.3.1 The airflow velocity at every point should be within ±20 percent of the mean velocity across the cross-sectional area of the filters.

A.10.3.3.2 Where the provisions of 10.3.3.2 require shutting down the recirculation system, the exhaust system should remain in operation. In this event, recirculation air could be directed to the exterior of the building, thus stopping the recirculation process.

The recirculation airstream should not be considered part of the exhaust system for purposes of this standard.

A.10.4.5 Grounding is the process of bonding one or more conductive objects to the ground, so that all objects are at zero electrical potential. Refer to NFPA 77 for guidance on proper arrangements for grounding and bonding.

A.12.5.2 A preaction standard sprinkler system should be used only where a minimum temperature of 40°F (4°C) cannot be maintained. Dry-pipe or double-interlock preaction systems are not permitted for aircraft hangars due to their inherent time delay.

Any of the protection schemes outlined in any edition of this standard providing protection for fueled aircraft will also be allowed as a protection scheme for unfueled aircraft.

Annex B Building Construction Types

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

B.1 The material in Annex B is extracted from the 2009 edition of NFPA 220 and is included here as a convenience for users of this standard. Any requests for Formal Interpretations (FIs) or Tentative Interim Amendments (TIAs) on the following material should be directed to the Technical Committee on Building Construction.

B.2 Buildings and structures shall be classified according to their type of construction, which shall be based upon one of five basic types of construction designated as Type I, Type II, Type III, Type IV, and Type V, with fire resistance ratings not less than those specified in Table 4.1.1 and Sections 4.3 through 4.6 of NFPA 220 and with fire resistance ratings meeting the requirements of Chapter 5 of NFPA 220. [220:4.1.1]

B.3 Type I and Type II Construction. Type I (442 or 332) and Type II (222, 111, or 000) construction shall be those types in which the fire walls, structural elements, walls, arches, floors, and roofs are of approved noncombustible or limited-combustible materials. [220:4.3.1]

B.4 Type III Construction. Type III (211 or 200) construction shall be that type in which exterior walls and structural elements that are portions of exterior walls are of approved noncombustible or limited-combustible materials, and in which fire walls, interior structural elements, walls, arches, floors, and roofs are entirely or partially of wood of smaller dimensions than required for Type IV construction or are of approved combustible, limited-combustible, or other approved combustible materials. [220:4.4.1]

B.5 Type IV (2HH) Allowable Dimensions. All dimensions in B.5 shall be considered nominal. [220:4.5.5]

B.5.1 Type IV Construction. Type IV (2HH) construction shall be that type in which fire walls, exterior walls, and interior bearing walls and structural elements that are portions of such walls are of approved noncombustible or limited-combustible materials. Other interior structural elements, arches, floors, and roofs shall be of solid or laminated wood without concealed spaces and shall comply with the allowable dimensions of B.5. [220:4.5.1]

B.5.2 Wood columns supporting floor loads shall be not less than 8 in. (205 mm) in any dimension. [220:4.5.5.1.1]

B.5.3 Wood beams and girders supporting floor loads shall be not less than 6 in. (150 mm) in width and not less than 10 in. (255 mm) in depth. [220:4.5.5.2.1]

B.5.4 Framed or glued laminated arches for roof construction that spring from the finished ground level or the floor line and do not support floor loads shall have members not less than 6 in. (150 mm) in width and not less than 8 in. (205 mm) in depth for the lower half of the member height and not less than 6 in. (150 mm) in depth for the upper half of the member height. [220:4.5.5.3.2]

B.5.5 Floors. Floors shall be constructed of spline or tongue-and-groove plank not less than 3 in. (75 mm) in thickness that is covered with 1 in. (25 mm) tongue-and-groove flooring, laid crosswise or diagonally to the plank, or with ½ in. (13 mm) wood structural panel; or they shall be constructed of laminated planks not less than 4 in. (100 mm) in width, set close together on edge, spiked at intervals of 18 in. (455 mm), and covered with 1 in. (25 mm) tongue-and-groove flooring, laid crosswise or diagonally to the plank, or with ½ in. (13 mm) wood structural panel. [220:4.5.5.5]

B.5.6 Roof Decks. Roof decks shall be constructed of spline or tongue-and-groove plank not less than 2 in. (51 mm) in thickness; or of laminated planks not less than 3 in. (75 mm) in width, set close together on edge, and laid as required for floors; or of 1½ in. (29 mm) thick interior wood structural
Table B.2 Fire Resistance Ratings for Type I through Type V Construction (hr)

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
<th>Type V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>442</td>
<td>332</td>
<td>222</td>
<td>111</td>
<td>000</td>
</tr>
<tr>
<td>Exterior Bearing Walls*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting more than one floor, columns, or other bearing walls</td>
<td>4 3</td>
<td>2 1</td>
<td>0b</td>
<td>2 2</td>
<td>2 1</td>
</tr>
<tr>
<td>Supporting one floor only</td>
<td>4 3</td>
<td>2 1</td>
<td>0b</td>
<td>2 2</td>
<td>2 1</td>
</tr>
<tr>
<td>Supporting a roof only</td>
<td>4 3</td>
<td>1 1</td>
<td>0b</td>
<td>2 2</td>
<td>2 1</td>
</tr>
<tr>
<td>Interior Bearing Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting more than one floor, columns, or other bearing walls</td>
<td>4 3</td>
<td>2 1</td>
<td>0</td>
<td>2 1</td>
<td>0</td>
</tr>
<tr>
<td>Supporting one floor only</td>
<td>3 2</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>Supporting roofs only</td>
<td>3 2</td>
<td>1 1</td>
<td>0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>Columns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting more than one floor, columns, or other bearing walls</td>
<td>4 3</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Supporting one floor only</td>
<td>3 2</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Supporting roofs only</td>
<td>3 2</td>
<td>1 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Beams, Girders, Trusses, and Arches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting more than one floor, columns, or other bearing walls</td>
<td>4 3</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Supporting one floor only</td>
<td>2 2</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Supporting roofs only</td>
<td>2 2</td>
<td>1 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Floor-Ceiling Assemblies</td>
<td>2 2</td>
<td>2 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Roof-Ceiling Assemblies</td>
<td>2 1½</td>
<td>1 1</td>
<td>0</td>
<td>1 0</td>
<td>H</td>
</tr>
<tr>
<td>Interior Nonbearing Walls</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>Exterior Nonbearing Wallsc</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
</tr>
</tbody>
</table>

H: heavy timber members (see text for requirements).
*See NFPA 5000, 7.3.2.1.
bSee NFPA 5000, Section 7.3.
cSee 4.3.2.12, 4.4.2.3, and 4.5.6.8 of NFPA 220.
[220: Table 4.1.1]

Panel (exterior glue); or of approved noncombustible or limited-combustible materials of equivalent fire durability. [220:4.5.5.6]

B.6 Type V (111 or 000) Construction. Type V (111 or 000) construction shall be that type in which structural elements, walls, arches, floors, and roofs are entirely or partially of wood or other approved material. [220:4.6]

Annex C Informational References

C.1 Referenced Publications. The documents or portions thereof listed in this annex are referenced within the informational sections of this standard and are not part of the requirements of this document unless also listed in Chapter 2 for other reasons.

C.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

C.1.2 Other Publications.

C.1.2.1 Jane’s Information Group Publications. Jane’s Information Group Ltd., Sentinel House, 163 Brighton Road, Coulsdon, Surrey CR5 2YH, U.K.

Jane’s All the World’s Aircraft, various editions.

C.2 Informational References. (Reserved)

C.3 References for Extracts in Informational Sections.

Index

The copyright in this index is separate and distinct from the copyright in the document that it indexes. The licensing provisions set forth for the document are not applicable to this index. This index may not be reproduced in whole or in part by any means without the express written permission of NFPA.
Sequence of Events Leading to Issuance of an NFPA Committee Document

Step 1: Call for Proposals

• Proposed new Document or new edition of an existing Document is entered into one of two yearly revision cycles, and a Call for Proposals is published.

Step 2: Report on Proposals (ROP)

• Committee meets to act on Proposals, to develop its own Proposals, and to prepare its Report.
• Committee votes by written ballot on Proposals. If two-thirds approve, Report goes forward. Lacking two-thirds approval, Report returns to Committee.
• Report on Proposals (ROP) is published for public review and comment.

Step 3: Report on Comments (ROC)

• Committee meets to act on Public Comments to develop its own Comments, and to prepare its report.
• Committee votes by written ballot on Comments. If two-thirds approve, Report goes forward. Lacking two-thirds approval, Report returns to Committee.
• Report on Comments (ROC) is published for public review.

Step 4: Technical Report Session

• “Notices of intent to make a motion” are filed, are reviewed, and valid motions are certified for presentation at the Technical Report Session. (“Consent Documents” that have no certified motions bypass the Technical Report Session and proceed to the Standards Council for issuance.)
• NFPA membership meets each June at the Annual Meeting Technical Report Session and acts on Technical Committee Reports (ROP and ROC) for Documents with “certified amending motions.”
• Committee(s) vote on any amendments to Report approved at NFPA Annual Membership Meeting.

Step 5: Standards Council Issuance

• Notification of intent to file an appeal to the Standards Council on Association action must be filed within 20 days of the NFPA Annual Membership Meeting.
• Standards Council decides, based on all evidence, whether or not to issue Document or to take other action, including hearing any appeals.

Committee Membership Classifications

The following classifications apply to Technical Committee members and represent their principal interest in the activity of the committee.

M Manufacturer: A representative of a maker or marketer of a product, assembly, or system, or portion thereof, that is affected by the standard.
U User: A representative of an entity that is subject to the provisions of the standard or that voluntarily uses the standard.
I/M Installer/Maintainer: A representative of an entity that is in the business of installing or maintaining a product, assembly, or system affected by the standard.
L Labor: A labor representative or employee concerned with safety in the workplace.
R/T Applied Research/Testing Laboratory: A representative of an independent testing laboratory or independent applied research organization that promulgates and/or enforces standards.
E Enforcing Authority: A representative of an agency or an organization that promulgates and/or enforces standards.
I Insurance: A representative of an insurance company, broker, agent, bureau, or inspection agency.
C Consumer: A person who is, or represents, the ultimate purchaser of a product, system, or service affected by the standard, but who is not included in the User classification.
SE Special Expert: A person not representing any of the previous classifications, but who has a special expertise in the scope of the standard or portion thereof.

NOTES:
1. “Standard” connotes code, standard, recommended practice, or guide.
2. A representative includes an employee.
3. While these classifications will be used by the Standards Council to achieve a balance for Technical Committees, the Standards Council may determine that new classifications of members or unique interests need representation in order to foster the best possible committee deliberations on any project. In this connection, the Standards Council may make appointments as it deems appropriate in the public interest, such as the classification of “Utilities” in the National Electrical Code Committee.
4. Representatives of subsidiaries of any group are generally considered to have the same classification as the parent organization.
NFPA Document Proposal Form

NOTE: All Proposals must be received by 5:00 pm EST/EDST on the published Proposal Closing Date.

For further information on the standards-making process, please contact the Codes and Standards Administration at 617-984-7249 or visit www.nfpa.org/codes.
For technical assistance, please call NFPA at 1-800-344-3555.

Please indicate in which format you wish to receive your ROP/ROC
☐ electronic ☐ paper ☒ download
(Note: If choosing the download option, you must view the ROP/ROC from our website; no copy will be sent to you.)

Date: April 1, 200X Name: John J. Doe Tel. No.: 716-555-1234

Company: Air Canada Pilot’s Association Email:

Street Address: 123 Summer Street Lane City: Lewiston State: NY Zip: 14092

***If you wish to receive a hard copy, a street address MUST be provided. Deliveries cannot be made to PO boxes.

Please indicate organization represented (if any)

1. (a) NFPA Document Title: National Fuel Gas Code NFPA No. & Year: 54, 200X Edition
 (b) Section/Paragraph: 3.3

2. Proposal Recommends (check one): ☐ new text ☒ revised text ☐ deleted text

3. Proposal (include proposed new or revised wording, or identification of wording to be deleted): [Note: Proposed text should be in legislative format; i.e., use underscore to denote wording to be inserted (inserted wording) and strike-through to denote wording to be deleted (deleted wording).]

Revise definition of effective ground-fault current path to read:

3.3.78 Effective Ground-Fault Current Path. An intentionally constructed, permanent, low impedance electrically conductive path designed and intended to carry underground electric fault current conditions from the point of a ground fault on a wiring system to the electrical supply source.

4. Statement of Problem and Substantiation for Proposal: (Note: State the problem that would be resolved by your recommendation; give the specific reason for your Proposal, including copies of tests, research papers, fire experience, etc. If more than 200 words, it may be abstracted for publication.)

Change uses proper electrical terms.

5. Copyright Assignment
 (a) ☐ I am the author of the text or other material (such as illustrations, graphs) proposed in the Proposal.
 (b) ☒ Some or all of the text or other material proposed in this Proposal was not authored by me. Its source is as follows: (please identify which material and provide complete information on its source)

 ABC Co.

I hereby grant and assign to the NFPA all and full rights in copyright in this Proposal and understand that I acquire no rights in any publication of NFPA in which this Proposal in this or another similar or analogous form is used. Except to the extent that I do not have authority to make an assignment in materials that I have identified in (b) above, I hereby warrant that I am the author of this Proposal and that I have full power and authority to enter into this assignment.

Signature (Required)

PLEASE USE SEPARATE FORM FOR EACH PROPOSAL

Mail to: Secretary, Standards Council · National Fire Protection Association
 1 Batterymarch Park · Quincy, MA 02169-7471 OR
 Fax to: (617) 770-3500 OR Email to: proposals_comments@nfpa.org

6/09-B
NFPA Document Proposal Form

NOTE: All Proposals must be received by 5:00 pm EST/EDST on the published Proposal Closing Date.

Please indicate in which format you wish to receive your ROP/ROC □ electronic □ paper □ download
(Note: If choosing the download option, you must view the ROP/ROC from our website; no copy will be sent to you.)

Date Name Tel. No.
Company Email
Street Address City State Zip

***If you wish to receive a hard copy, a street address MUST be provided. Deliveries cannot be made to PO boxes.

Please indicate organization represented (if any)

1. (a) NFPA Document Title ___________________________ NFPA No. & Year ___________________________
 (b) Section/Paragraph ___________________________

2. Proposal Recommends (check one): □ new text □ revised text □ deleted text

3. Proposal (include proposed new or revised wording, or identification of wording to be deleted): [Note: Proposed text should be in legislative format; i.e., use underscore to denote wording to be inserted (inserted wording) and strike-through to denote wording to be deleted (deleted wording).]

4. Statement of Problem and Substantiation for Proposal: (Note: State the problem that would be resolved by your recommendation; give the specific reason for your Proposal, including copies of tests, research papers, fire experience, etc. If more than 200 words, it may be abstracted for publication.)

5. Copyright Assignment
 (a) □ I am the author of the text or other material (such as illustrations, graphs) proposed in the Proposal.
 (b) □ Some or all of the text or other material proposed in this Proposal was not authored by me. Its source is as follows: (please identify which material and provide complete information on its source)

I hereby grant and assign to the NFPA all and full rights in copyright in this Proposal and understand that I acquire no rights in any publication of NFPA in which this Proposal in this or another similar or analogous form is used. Except to the extent that I do not have authority to make an assignment in materials that I have identified in (b) above, I hereby warrant that I am the author of this Proposal and that I have full power and authority to enter into this assignment.

Signature (Required)

PLEASE USE SEPARATE FORM FOR EACH PROPOSAL

Mail to: Secretary, Standards Council · National Fire Protection Association
 1 Batterymarch Park · Quincy, MA 02169-7471 OR
 Fax to: (617) 770-3500 OR Email to: proposals_comments@nfpa.org

6/09-C